×

Differential Harnack inequalities and Perelman type entropy formulae for subelliptic operators. (English) Zbl 1366.53027

Summary: In this paper, under the generalized curvature-dimension inequality recently introduced by F. Baudoin and N. Garofalo [J. Eur. Math. Soc. (JEMS) 19, No. 1, 151–219 (2017; Zbl 1359.53018)], we obtain differential Harnack inequalities (Theorem 2.1) for the positive solutions to the Schrödinger equation associated to subelliptic operator with potential. As applications of the differential Harnack inequality, we derive the corresponding parabolic Harnack inequality (Theorem 4.1). Also we define the Perelman type entropy associated to subelliptic operators and derive its monotonicity (Theorem 5.3).

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J35 Heat and other parabolic equation methods for PDEs on manifolds

References:

[1] Bakry, D., On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, (Taniguchi Symposium, New Trends in Stochastic Analysis (Charingworth, 1994) (1997), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 43-75
[2] Bakry, D.; Baudoin, F.; Bonnefont, M.; Qian, B., Subelliptic Li-Yau estimates on three dimensional model spaces, (Potential Theory and Stochastics in Albac: Aurel Cornea Memorial Volume (2009))
[4] Baudoin, F.; Bonnefont, M., Log-Sobolev inequalities for subelliptic operators satisfying a genralized curvature dimension inequality, J. Funct. Anal., 262, 6, 2646-2676 (2012) · Zbl 1254.58004
[5] Baudoin, F.; Bonnefont, M., Reverse Poincare inequalities, Isoperimetry and Riesz transforms in Carnot groups, Nonlinear Anal. TMA, 131, 48-59 (2016) · Zbl 1330.35009
[6] Baudoin, F.; Bonnefont, M.; Garofalo, N., A sub-Riemannian curvature-dimensional inequality, volume doubling property and the Poincaré inequality, Math. Ann., 358, 3-4, 833-860 (2014) · Zbl 1287.53025
[7] Baudoin, F.; Bonnefont, M.; Garofalo, N.; Munive, I. H., Volume and distance comparison theorems for sub-Riemannian manifolds, J. Funct. Anal., 267, 7, 2005-2027 (2014) · Zbl 1303.53042
[8] Baudoin, F.; Garofalo, N., Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc. (JEMS), 19, 1, 151-219 (2017) · Zbl 1359.53018
[9] Baudoin, F.; Garofalo, N., Perelman’s entropy and doubling property on Riemannian manifolds, J. Geom. Anal., 21, 1119-1131 (2011) · Zbl 1238.58024
[10] Baudoin, F.; Kim, B.; Sobolev, Poincare and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality, Rev. Mat. Iberoam., 30, 1, 109-131 (2014) · Zbl 1287.53026
[11] Baudoin, F.; Kim, B., The Lichnerowicz-Obata theorem on sub-Riemannian manifolds with transverse symmetries, J. Geom. Anal., 26, 1, 156-170 (2016) · Zbl 1336.53043
[12] Bony, J. M., Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19, 277-304 (1969) · Zbl 0176.09703
[13] Cao, H. D.; Yau, S. T., Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields, Math. Z., 211, 485-504 (1992) · Zbl 0808.58037
[14] Chang, S. C.; Kuo, T. J.; Lai, S. H., Li-Yau gradient estimate and entropy formulae for the CR heat equation in a closed pseudohermitian 3-manifold, J. Differential Geom., 89, 185-216 (2011) · Zbl 1264.32030
[15] Friedman, A., Partial Differential Equations of Parabolic Type (2008), Dover
[16] Jerison, D.; Sánchez-Calle, A., Subelliptic second order differential operators, (Lecture Notes in Math. Complex Ananlysis III, vol. 1277 (1987)), 46-77 · Zbl 0634.35017
[17] Ledoux, M., The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse IX, 305-366 (2000) · Zbl 0980.60097
[18] Li, J. F.; Xu, X. J., Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math., 226, 5, 4456-4491 (2011) · Zbl 1226.58009
[19] Li, P.; Yau, S. T., On the parabolic kernel of the Schrödinger operator, Acta. Math., 156, 153-201 (1986) · Zbl 0611.58045
[20] Li, X. D., Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature, Math. Ann., 353, 2, 403-437 (2012) · Zbl 1280.58016
[22] Nash, J., Continuity of solution of parabolic and elliptic equations, Am. J. Math., 80, 931-954 (1958) · Zbl 0096.06902
[23] Ni, L., The entropy formula for linear heat equation, J. Geom. Anal.. J. Geom. Anal., J. Geom. Anal., 14, 369-374 (2004), (Addendum) · Zbl 1062.58028
[25] Qian, B., Positive curvature property for some hypoelliptic operators, Bull. Sci. Math., 135, 262-278 (2011) · Zbl 1215.58014
[26] Qian, B., Positive curvature property for sub-Laplacian on nilpotent Lie group of rank two, Potential Anal., 39, 325-340 (2013) · Zbl 1286.60078
[27] Qian, B., Remarks on differential Harnack inequalities, J. Math. Anal. Appl., 409, 556-566 (2014) · Zbl 1310.58016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.