×

On the motion of droplets driven by solutal Marangoni convection in alloy systems with a miscibility gap. (English) Zbl 1364.76057

Summary: In the first part of this work, we analytically study the motion of two droplets driven by solutal Marangoni convection in a bipolar coordinate. Particular solutions for the Laplace and Stokes equations are found by applying Robin-type boundary conditions for mass transfer and by utilizing continuity of stream function and impenetrability at the surface of droplets. The solutions for the Laplace and Stokes equations are connected by the tangential stress balance between the viscosity stress and the Marangoni stress caused by concentration gradients. In the second part, we numerically investigate the motion of two droplets in an immiscible fluid by solving the combined convective Cahn-Hilliard and Navier-Stokes equations, where the capillary tensor is used to account for the Marangoni force. A significant outcome of the present work is that the attraction or repulsion of droplets is determined by droplet radius and the Marangoni number. In both cases, we obtain the stream lines affected by the spacing between droplets and the ratio of the radius of the droplet.

MSC:

76E06 Convection in hydrodynamic stability
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Atencia, J.; Beebe, D. J., Nature, 437, 648 (2005)
[2] Nagai, K.; Sumino, Y.; Kitahata, H.; Yoshikawa, K., Phys. Rev. E, 71, 065301 (2005)
[3] Gonuguntla, M.; Sharma, A., Langmuir, 20, 3456 (2004)
[4] Borcia, R.; Bestehorn, M., Phys. Rev. E, 75, 056309 (2007)
[5] Tegze, G.; Pusztai, T.; Gránásy, L., Mater. Sci. Eng. A, 413-414, 418 (2005)
[6] Bestehorn, M.; Pototsky, A.; Thiele, U., Eur. Phys. J. B, 33, 457 (2003)
[7] Jeffery, G. B., Proc. R. Soc., 87, 109 (1912) · JFM 43.0453.01
[8] Stimson, M.; Jeffery, G. B., Proc. R. Soc., 111, 110 (1926) · JFM 52.0865.02
[9] Golovin, A. A.; Nir, A.; Pismen, L. M., Ind. Eng. Chem. Res., 34, 3278 (1995)
[10] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Annu. Rev. Fluid Mech., 30, 139 (1998) · Zbl 1398.76051
[11] Jacqmin, D., J. Comput. Phys., 155, 96 (1999) · Zbl 0966.76060
[12] Lowengrub, J. S.; Truskinovsky, L., Proc. R. Soc. Lond. Ser. A, 454, 2617 (1998) · Zbl 0927.76007
[13] Yue, P.; Feng, J. J.; Liu, C.; Shen, J., J. Fluid Mech., 515, 293 (2004) · Zbl 1130.76437
[14] Villanueva, W.; Sjodahl, J.; Stjernstrom, M.; Roeraade, J.; Amberg, G., Langmuir, 23, 1171 (2007)
[15] Stone, H. A., Annu. Rev. Fluid Mech., 26, 65 (1994) · Zbl 0802.76020
[16] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics (1983), Martinus Nijhoff: Martinus Nijhoff The Hague
[17] Witkowski, L. M.; Walker, J. S., Phys. Fluids, 14, 2647 (2002) · Zbl 1185.76400
[18] Haber, S.; Hetsroni, G.; Solan, A., Int. J. Multiph. Flow, 1, 57 (1973) · Zbl 0357.76028
[19] Cahn, J. W.; Hilliard, J. E., J. Chem. Phys., 28, 258 (1958) · Zbl 1431.35066
[20] Muñoz, G., Amer. J. Phys., 64, 1153 (1996) · Zbl 1219.81196
[21] Nestler, B.; Wheeler, A. A.; Ratke, L.; Stöcker, C., Physica D, 141, 133 (2000) · Zbl 0957.80003
[22] Anderson, D. M.; McFadden, G. B.; Wheeler, A. A., Physica D, 135, 175 (2000) · Zbl 0951.35112
[23] Badalassi, V. E.; Ceniceros, H. D.; Banerjee, S., J. Comput. Phys., 190, 371 (2003) · Zbl 1076.76517
[24] Kim, J., Commun. Comput. Phys., 12, 613 (2012) · Zbl 1373.76030
[25] Griebel, M.; Dornseifer, T.; Neunhoeffer, T., Numerical Simulation in Fluid Dynamics: A Practical Introduction (1997), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia · Zbl 0945.76001
[26] Moin, P., Fundamentals of Engineering Numerical Analysis (2010), Cambridge University Press: Cambridge University Press New York · Zbl 1228.65003
[27] Langer, J. S., Rev. Modern Phys., 52, 1 (1980)
[28] Wang, F.; Choudhury, A.; Selzer, M.; Mukherjee, R.; Nestler, B., Phys. Rev. E, 86, 066318 (2012)
[29] Stöcker, C.; Ratke, L., J. Cryst. Growth, 203, 582 (1999)
[30] Levich, V. G., Physicochemical Hydrodynamics (1962), Prentice Hall: Prentice Hall Englewood Cliffs, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.