×

Bell numbers and \(k\)-trees. (English) Zbl 0857.05010

The author shows that the number of partitions of \(\{1,2,\dots,n\}\) such that if \(0<|i-j|\leq a\) then \(i\) and \(j\) belong to different blocks is the Bell number \(B_{n-a}\).

MSC:

05A17 Combinatorial aspects of partitions of integers
05C05 Trees
11B73 Bell and Stirling numbers
Full Text: DOI

References:

[1] Beineke, L. W.; Pippert, R. E., The number of labeled \(k\)-dimensional trees, J. Combin. Theory, 6, 200-205 (1969) · Zbl 0175.20904
[2] (Erdo&#x030B;s, P.; Renyi, A.; Sós, A. T., Combinatorial Theory and its Applications III (1970), Bolyai János Matematikai Társulat: Bolyai János Matematikai Társulat Budapest, Hungary), 945-946
[3] Moon, J. W., The number of labeled \(k\)-trees, J. Combin. Theory, 6, 196-199 (1969) · Zbl 0175.50203
[4] Read, R. C., Contributions to the cell growth problem, Canad. J. Math., 14, 1-20 (1962) · Zbl 0105.13510
[5] van Lint, J. H.; Wilson, R. M., A Course in Combinatorics, ((1992), Cambridge University Press: Cambridge University Press Cambridge), 105 · Zbl 0769.05001
[6] Whitehead, E. G., Enumerative Combinatorics, ((1972), Courant Institute of Mathematical Sciences: Courant Institute of Mathematical Sciences New York University), 8-13 · Zbl 0283.05007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.