×

Emergence of universal global behavior from reversible local transitions in asynchronous systems. (English) Zbl 1355.68092

Summary: Reversible computing usually focuses on how to establish a valid equivalence between the global reversibility and local reversibility in computational systems. Hitherto the equivalence has been precisely developed in cellular automata, combinational circuits and quantum computers, but it implicitly assumes that the underlying systems are synchronously timed. Alternative systems include the delay-insensitive (DI) circuits and asynchronous cellular automata (ACAs), where the local operations of each component (cell) may be executed independently at random times. Despite the randomness associated with asynchronous timings, equivalence between the global and local reversibility can be simply achieved in both DI-circuits [K. Morita, Lect. Notes Comput. Sci. 2055, 102–113 (2001; Zbl 0984.68512)] and ACAs [the first author et al., Lect. Notes Comput. Sci. 2509, 220–229 (2002; Zbl 1029.68101)], provided that their local operations (transitions) are thoroughly serialized. The complete exclusion of concurrency in local behavior, however, will profoundly depress the parallel processing efficiency of DI-circuits as well as the intrinsic massive parallelism of ACAs. This paper aims at exploring what kind of complex global behavior may arise from the concurrent operations that are invertible at local level. To this end, we show that DI-circuits composed of reversible elements can actually exhibit universal input and output behavior, with the universality emerging from the concurrency in reversible local operations. Likewise, by further embedding all circuits into the cellular space, the emergence of universal global transitions from reversible local transitions can be exactly identified in an ACA which, due to the bijectivity of its local function, has significantly lower complexity as compared to other models.

MSC:

68Q05 Models of computation (Turing machines, etc.) (MSC2010)
68Q80 Cellular automata (computational aspects)
94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
Full Text: DOI

References:

[1] Bennett, C. H., The thermodynamics of computation—a review, Int. J. Theor. Phys., 21, 12, 905-940 (1982)
[3] Durand-Lose, J., Computing inside the billiard ball model, (Adamatzky, A., Collision-Based Computing (2002), Springer-Verlag), 135-160
[4] Feynman, F., Quantum mechanical computers, Found. Phys., 16, 6, 507-531 (1986)
[5] Frank, M.; Knight, T.; Margolus, N., Reversibility in optimally scalable computer architectures, (Proc. 1st Int. Conf. on Unconventional Models of Computation (1998), Springer: Springer Berlin) · Zbl 0901.68069
[6] Fredkin, E.; Toffoli, T., Conservative logic, Int. J. Theor. Phys., 21, 3-4, 219-253 (1982) · Zbl 0496.94015
[7] Goles, E.; Meunierc, P. E.; Rapaport, I.; Theyssier, G., Communication complexity and intrinsic universality in cellular automata, Theor. Comput. Sci., 412, 2-21 (2011) · Zbl 1207.68213
[8] Gupta, P.; Agrawal, A.; Jha, N. K., An algorithm for synthesis of reversible logic circuits, IEEE Trans. CAD, 25, 11, 2317-2330 (2006)
[9] Hauck, S., Asynchronous design methodologies: an overview, Proc. IEEE, 83, 1, 69-93 (1995)
[10] Holian, B. L.; Hoover, Wm. G.; Posch, H. A., Resolution of Loschmidt’s Paradox: the origin of irreversible behavior in reversible atomistic dynamics, Phys. Rev. Lett., 59, 10-13 (1987)
[11] Hoover, Wm. G.; Hoover, C. G., Time’s arrow for shockwaves; bit-reversible Lyapunov and covariant vectors; symmetry breaking, Comput. Methods Sci. Technol., 19, 2, 69-75 (2013)
[12] Imai, K.; Morita, K., A computation-universal two-dimensional 8-state triangular reversible cellular automaton, Theor. Comput. Sci., 231, 181-191 (2000) · Zbl 0951.68086
[13] Kane, B. E., A silicon-based nuclear spin quantum computer, Nature, 393, 133-137 (1998)
[14] Kari, J., Reversibility of 2D cellular automata is undecidable, Physica D, 45, 379-385 (1990) · Zbl 0729.68058
[15] Kari, J., Reversible cellular automata, developments in language theory, LNCS, 3572, 2-23 (2005)
[16] Keller, R. M., Towards a theory of universal speed-independent modules, IEEE Trans. Comput., C-23, 1, 21-33 (1974) · Zbl 0277.94021
[17] Kielpinski, D.; Monroe, C.; Wineland, D. J., Architecture for a large-scale ion-trap quantum computer, Nature, 417, 709-711 (2002)
[18] Landauer, R., Irreversibility and heat generation in the computing process, IBM J. Res. Dev., 5, 183-191 (1961) · Zbl 1160.68305
[19] Lee, J.; Peper, F.; Adachi, S.; Morita, K.; Mashiko, S., Reversible computation in asynchronous cellular automata, UMC2002, LNCS, 2509, 220-229 (2003) · Zbl 1029.68101
[21] Lee, J.; Peper, F.; Adachi, S.; Morita, K., An asynchronous cellular automaton implementing 2-state 2-input 2-output reversed-twin reversible elements, ACRI 2008, LNCS, 5191, 67-76 (2008) · Zbl 1159.68497
[22] Lee, J.; Imai, K.; Zhu, Q. S., Fluctuation-driven computing on number-conserving cellular automata, Inf. Sci., 187, 266-276 (2012) · Zbl 1267.68149
[23] Lee, J.; Yang, R. L.; Morita, K., Design of 1-tape 2-symbol reversible Turing machines based on reversible logic elements, Theor. Comput. Sci., 460, 78-88 (2012) · Zbl 1279.68081
[26] Margolus, N., Physics-like models of computation, Physica D, 10, 81-95 (1984) · Zbl 0563.68051
[27] Maslov, D.; Dueck, G. W.; Miller, D. M., Techniques for the synthesis of reversible Toffoli networks, ACM Trans. Des. Autom. Electron. Syst., 12, 4 (2007)
[28] Milner, R., A calculus of communicating systems, (LNCS, vol. 92 (1980), Springer) · Zbl 0452.68027
[29] Morita, K.; Nishihara, N.; Yamamoto, Y.; Zhang, Z., A hierarchy of uniquely parsable grammar classes and deterministic acceptors, Acta Inf., 34, 389-410 (1997) · Zbl 0865.68076
[30] Morita, K., A simple universal logic element and cellular automata for reversible computing, Proc. 3rd Int. Conference on Machines, Computations, and Universality, Chisinau, LNCS, 2055, 102-113 (2001) · Zbl 0984.68512
[31] Morita, K., Reversible computing and cellular automata — a survey, Theor. Comput. Sci., 395, 1, 101-131 (2008) · Zbl 1145.68036
[32] Ollinger, N., Universalities in cellular automata: a (short) survey, (Durand, B., JAC’08 (2008), MCCME Publishing House: MCCME Publishing House Moscow), 102-118
[33] Patra, P.; Fussell, D. S., Conservative delay-insensitive circuits, Workshop Phys. Comput., 248-259 (1996)
[34] Peper, F.; Isokawa, T.; Kouda, N.; Matsui, N., Self-timed cellular automata and their computational ability, Future Gener. Comput. Syst., 18, 893-904 (2002) · Zbl 1042.68080
[35] Peper, F.; Lee, J.; Adachi, S.; Mashiko, S., Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers?, Nanotechnology, 14, 4, 469-485 (2003)
[36] Peper, F.; Lee, J.; Abo, F.; Isokawa, T.; Adachi, S.; Matsui, N.; Mashiko, S., Fault-tolerance in nanocomputers: a cellular array approach, IEEE Trans. Nanotechnol., 3, 1, 187-201 (2004)
[37] Peper, F.; Lee, J.; Isokawa, T., Brownian cellular automata, J. Cell. Autom., 5, 3, 185-206 (2010) · Zbl 1203.68112
[38] Peper, F.; Lee, J.; Carmona, J.; Cortadella, J.; Morita, K., Brownian citcuits: fundamentals, ACM J. Emerg. Technol. Comput. Syst., 9, 1, 3:1-3:24 (2013)
[39] Phillips, I.; Ulidowski, I., Reversibility and models for concurrency, Electron. Notes Theor. Comput. Sci., 192, 93-108 (2007) · Zbl 1278.68220
[40] Schönfisch, B.; de Roos, A., Synchronous and asynchronous updating in cellular automata, BioSystems, 51, 123-143 (1999)
[41] Seck-Tuoh-Mora, J. C.; Martinez, G. J.; Alonso-Sanz, R.; Hernandez-Romero, N., Invertible behavior in elementary cellular automata with memory, Inf. Sci., 199, 125-132 (2012) · Zbl 1248.68345
[42] Siap, I.; Akin, H.; Sah, F., Garden of eden configurations for 2-D cellular automata with rule 2460 N, Inf. Sci., 180, 3562-3571 (2010) · Zbl 1206.68205
[43] Slotterback, S.; Mailman, M.; Ronaszegi, K.; van Hecke, M.; Girvan, M.; Losert, W., Onset of irreversibility in cyclic shear of granular packings, Phys. Rev. E, 85, 021309 (2012)
[44] Vasudevan, D. P.; Lala, P. K.; Di, J.; Parkerson, J. P., Reversible-logic design with online testability, IEEE Trans. Instrum. Meas., 55, 2, 406-414 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.