×

How to make a linear network code (strongly) secure. (English) Zbl 1370.94013

Summary: A linear network code is called \(k\)-secure if it is secure even if an adversary eavesdrops at most \(k\) edges. In this paper, we show an efficient deterministic construction algorithm of a linear transformation \(T\) that transforms an (insecure) linear network code to a \(k\)-secure one for any \(k\), and extend this algorithm to strong \(k\)-security for any \(k\) . Our algorithms run in polynomial time if \(k\) is a constant, and these time complexities are explicitly presented. We also present a concrete size of \(|\mathsf{F}|\) for strong \(k\)-security, where \(\mathsf{F}\) is the underling finite field.

MSC:

94A05 Communication theory

References:

[1] Ahlswede R., Cai N., Li S.-Y.R., Yeung R.W.: Network information flow. IEEE Trans. Inf. Theory 46(4), 1204-1216 (2000). · Zbl 0991.90015
[2] Bhattad K., Narayanan K.R.: Weakly secure network coding. In: Proceedings of NetCod 2005, April (2005).
[3] Cai N., Yeung R.W.: A security condition for multi-source linear network coding. In: Proceedings of IEEE ISIT, 24-29 June, pp. 561-565 (2007).
[4] Cai N., Yeung R.W.: Secure network coding on a wiretap network. IEEE Trans. Inf. Theory 57(1), 424-435 (2011). · Zbl 1366.94442
[5] El Rouayheb S., Soljanin E., Sprintson A.: Secure network coding for wiretap networks of type II. IEEE Trans. Inf. Theory 58(3), 1361-1371 (2012). · Zbl 1365.94200
[6] Feldman J., Malkin T., Servedio R., Stein C.: On the capacity of secure network coding. In: 42nd Annual Allerton Conference on Communication, Control, and Computing (2004).
[7] Harada K., Yamamoto H.: Strongly secure linear network coding. IEICE Trans. 91-A(10), 2720-2728 (2008).
[8] Jaggi S., Sanders P., Chou P.A., Effros M., Egner S., Jain K., Tolhuizen L.M.G.M.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theory 51(6), 1973-1982 (2005). · Zbl 1288.94098
[9] Kurihara J., Uematsu T., Matsumoto R.: Explicit construction of universal strongly secure network coding via MRD codes. In: Proceedings of IEEE ISIT 2012, Cambridge, MA, pp. 1488-1492 (2012).
[10] Kurosawa K., Ohta H., Kakuta K.: How to construct strongly secure network coding scheme. In: ICITS, pp. 1-17 (2013). · Zbl 1395.94295
[11] Li S.Y.R., Yeung R.W., Cai N.: Linear network coding. IEEE Trans. Inf. Theory 49(2), 371-381 (2003). · Zbl 1063.94004
[12] Matsumoto R., Hayashi M.: Universal Strongly Secure Network Coding with Dependent and Non-uniform Messages. (2012). arXiv:1111.4174. · Zbl 1401.94103
[13] Shioji E., Matsumoto R., Uyematsu T.: Vulnerability of MRD-code-based universal secure network coding against stronger eavesdroppers. IEICE Trans. 93-A(11), 2026-2033 (2010).
[14] Silva D., Kschischang F.R.: Universal weakly secure network coding. In: Proceedings of IEEE ITW 2009, pp. 281-285 (2009).
[15] Silva D., Kschischang F.R.: Universal secure network coding via rank-metric codes. IEEE Trans. Inf. Theory 57(2), 1124-1135 (2011). · Zbl 1366.94321
[16] Tang Z., Lim H.W., Wang H.: Revisiting a secret sharing approach to network codes. In: ProvSec, pp. 300-317 (2012). · Zbl 1303.94113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.