×

Multifractal analysis for weak Gibbs measures: from large deviations to irregular sets. (English) Zbl 1369.37042

Summary: In this article we prove estimates for the topological pressure of the set of points whose Birkhoff time averages are far from the space averages corresponding to the unique equilibrium state that has a weak Gibbs property. In particular, if \(f\) has an expanding repeller and \(\phi\) is a Hölder continuous potential, we prove that the topological pressure of the set of points whose accumulation values of Birkhoff averages belong to some interval \(I\subset\mathbb{R}\) can be expressed in terms of the topological pressure of the whole system and the large deviations rate function. As a byproduct we deduce that most irregular sets for maps with the specification property have topological pressure strictly smaller than the whole system. Some extensions to a non-uniformly hyperbolic setting, level-2 irregular sets and hyperbolic flows are also given.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37A30 Ergodic theorems, spectral theory, Markov operators

References:

[1] J. F.Alves, S.Luzzatto, J.Freitas and S.Vaienti. From rates of mixing to recurrence times via large deviations. Adv. Math.228 (2011), 1203-1236.10.1016/j.aim.2011.06.0142822221 · Zbl 1236.37003
[2] L.Barreira, Y.Pesin and J.Schmeling. Multifractal spectra and multifractal rigidity for horseshoes. J. Dyn. Control Syst.3(1) (1997), 33-49.10.1007/BF02471761 · Zbl 0949.37017
[3] T.Bomfim, A.Castro and P.Varandas. Differentiability of thermodynamical quantities in non-uniformly expanding dynamics. Preprint, 2012, arXiv:1205.5361. · Zbl 1359.37071
[4] T.Bomfim and P.Varandas. Multifractal analysis of the irregular set for almost-additive sequences via large deviations. Preprint, 2014, arXiv:1410.2220. · Zbl 1352.37087
[5] R.Bowen. Some systems with unique equilibrium states. Math. Syst. Theory8 (1974), 193-202.10.1007/BF01762666 · Zbl 0299.54031 · doi:10.1007/BF01762666
[6] R.Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms(Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.10.1007/BFb0081279 · Zbl 0308.28010 · doi:10.1007/BFb0081279
[7] R.Bowen and D.Ruelle. The ergodic theory of Axiom A flows. Invent. Math.29(3) (1975), 181-202.10.1007/BF013898480380889 · Zbl 0311.58010
[8] H.Bruin and M.Todd. Equilibrium states for interval maps: the potential - tlog|Df|. Ann. Sci. Éc. Norm. Supér. (4)42 (2009), 559-600. · Zbl 1192.37051
[9] A.Castro and P.Varandas. Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability. Ann. Inst. H. Poincaré Anal. Non Linéaire30(2) (2013), 225-249.10.1016/j.anihpc.2012.07.004 · Zbl 1336.37028
[10] A.Castro and T.Nascimento. Statistical properties of equilibrium states for partially hyperbolic attractors. Preprint, UFBA, 2014.
[11] V.Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electron. Res. Announc. Math. Sci.17 (2010), 1-11.2628850 · Zbl 1193.37030
[12] V.Climenhaga. Topological pressure of simultaneous level sets. Nonlinearity26 (2013), 241-268.10.1088/0951-7715/26/1/2413001770 · Zbl 1294.37010 · doi:10.1088/0951-7715/26/1/241
[13] V.Climenhaga, D.Thompson and K.Yamamoto. Large deviations for systems with non-uniform structure. Preprint, 2013, arXiv:1304.5497. · Zbl 1417.37070
[14] H.Comman and J.Rivera-Letelier. Large deviations principles for non-uniformly hyperbolic rational maps. Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998), 539-579.10.1016/S0294-1449(98)80001-2 · Zbl 0932.37015
[15] M.Denker and M.Kesseböhmer. Thermodynamical formalism, large deviation and multifractals. Stochastic Climate Models(Progress in Probability, 49). Birkhäuser, Basel, 2001, pp. 159-169.10.1007/978-3-0348-8287-3_6 · Zbl 0988.37033
[16] L.Díaz and K.Gelfert. Porcupine-like horseshoes: transitivity, Lyapunov spectrum, and phase transitions. Fund. Math.216(1) (2012), 55-100.10.4064/fm216-1-22864450 · Zbl 1273.37027
[17] L.Díaz, K.Gelfert and M.Rams. Rich phase transitions in step skew products. Nonlinearity24(12) (2011), 3391-3412.10.1088/0951-7715/24/12/0052854309 · Zbl 1263.37049
[18] A.Eizenberg, Y.Kifer and B.Weiss. Large deviations for ℤ^d actions. Comm. Math. Phys.164 (1994), 433-454.10.1007/BF02101485 · Zbl 0841.60086
[19] D.Feng and W.Huang. Lyapunov spectrum of asymptotically sub-additive potentials. Comm. Math. Phys.297 (2010), 1-43.10.1007/s00220-010-1031-x2645746 · Zbl 1210.37007
[20] K.Gelfert and M.Rams. The Lyapunov spectrum of some parabolic systems. Ergod. Th. & Dynam. Sys.29(3) (2009), 919-940.10.1017/S0143385708080462 · Zbl 1180.37051
[21] F.Hofbauer. Examples for the nonuniqueness of the equilibrium state. Trans. Amer. Math. Soc.228 (1977), 223-241.10.1090/S0002-9947-1977-0435352-10435352 · Zbl 0355.28010 · doi:10.1090/S0002-9947-1977-0435352-1
[22] T.Jordan and M.Rams. Multifractal analysis of weak Gibbs measures for non-uniformly expanding C^1 maps. Ergod. Th. & Dynam. Sys.31(1) (2011), 143-164.10.1017/S0143385709000960 · Zbl 1213.37052
[23] V.Kleptsyn, D.Ryzhov and S.Minkov. Special ergodic theorems and dynamical large deviations. Nonlinearity25 (2012), 3189-3196.10.1088/0951-7715/25/11/31892991434 · Zbl 1256.37023
[24] I.Melbourne. Large and moderate deviations for slowly mixing dynamical systems. Proc. Amer. Math. Soc.137 (2009), 1735-1741.10.1090/S0002-9939-08-09751-72470832 · Zbl 1167.37020 · doi:10.1090/S0002-9939-08-09751-7
[25] I.Melbourne and M.Nicol. Large deviations for nonuniformly hyperbolic systems. Trans. Amer. Math. Soc.360 (2008), 6661-6676.10.1090/S0002-9947-08-04520-02434305 · Zbl 1151.37031
[26] Y.Pesin. Dimension Theory in Dynamical Systems(Contemporary Views and Applications). University of Chicago Press, Chicago, IL, 1997.10.7208/chicago/9780226662237.001.0001 · Zbl 0895.58033 · doi:10.7208/chicago/9780226662237.001.0001
[27] Y.Pesin and H.Weiss. The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos7(1) (1997), 89-106.10.1063/1.1662421439809 · Zbl 0933.37020
[28] C.Pfister and W.Sullivan. Large deviations estimates for dynamical systems without the specification property. Applications to the 𝛽-shifts. Nonlinearity18 (2005), 237-261.10.1088/0951-7715/18/1/0132109476 · Zbl 1069.60029
[29] M.Pollicott and R.Sharp. Large deviations for intermittent maps. Nonlinearity22 (2009), 2079-2092.10.1088/0951-7715/22/9/0012534293 · Zbl 1221.37014
[30] M.Pollicott and H.Weiss. Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Comm. Math. Phys.207 (1999), 145-171.10.1007/s0022000507221724859 · Zbl 0960.37008
[31] L.Rey-Bellet and L.-S.Young. Large deviations in non-uniformly hyperbolic dynamical systems. Ergod. Th. & Dynam. Sys.28 (2008), 587-612.10.1017/S0143385707000478 · Zbl 1154.37331
[32] F.Takens and E.Verbitski. Multifractal analysis of local entropies for expansive homeomorphisms with specification. Comm. Math. Phys.203 (1999), 593-612.10.1007/s0022000506271700158 · Zbl 0955.37002
[33] D.Thompson. A variational principle for topological pressure for certain non-compact sets. J. Lond. Math. Soc.80(3) (2009), 585-602.10.1112/jlms/jdp041 · Zbl 1194.37038 · doi:10.1112/jlms/jdp041
[34] M.Todd. Multifractal analysis for multimodal maps. Preprint, 2008.
[35] D.Thompson. The irregular set for maps with the specification property has full topological pressure. Dyn. Syst.25(1) (2010), 25-51.10.1080/146893609031562372765447 · Zbl 1186.37034 · doi:10.1080/14689360903156237
[36] P.Varandas. Non-uniform specification and large deviations for weak Gibbs measures. J. Stat. Phys.146 (2012), 330-358.10.1007/s10955-011-0392-72873016 · Zbl 1245.82038 · doi:10.1007/s10955-011-0392-7
[37] P.Varandas and M.Viana. Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Ann. Inst. H. Poincaré Anal. Non Linéaire27 (2010), 555-593.10.1016/j.anihpc.2009.10.002 · Zbl 1193.37009
[38] L.-S.Young. Some large deviations for dynamical systems. Trans. Amer. Math. Soc.318 (1990), 525-543. · Zbl 0721.58030
[39] X.Zhou and E.Chen. Multifractal analysis for the historic set in topological dynamical systems. Nonlinearity26(7) (2013), 1975-1997.10.1088/0951-7715/26/7/19753071449 · Zbl 1306.37011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.