×

A non-convex partition of unity and stress analysis of a cracked elastic medium. (English) Zbl 1446.74071

Summary: A stress analysis using a mesh-free method on a cracked elastic medium needs a partition of unity for a non-convex domain whether it is defined explicitly or implicitly. Constructing such partition of unity is a nontrivial task when we choose to create a partition of unity explicitly. We further extend the idea of the almost everywhere partition of unity and apply it to linear elasticity problem. We use a special mapping to build a partition of unity on a non-convex domain. The partition of unity that we use has a unique feature: the mapped partition of unity has a curved shape in the physical coordinate system. This novel feature is especially useful when the enrichment function has polar form, \(f(r, \theta) = r^\lambda g(\theta)\), because we can partition the physical domain in radial and angular directions to perform a highly accurate numerical integration to deal with edge-cracked singularity. The numerical test shows that we obtain a highly accurate result without refining the background mesh.

MSC:

74A10 Stress
74B05 Classical linear elasticity

Software:

XFEM

References:

[1] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free galerkin methods, International Journal for Numerical Methods in Engineering, 37, 2, 229-256, (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[2] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46, 1, 131-150, (1999) · Zbl 0955.74066 · doi:10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.0.co;2-j
[3] Babuška, I.; Banerjee, U.; Osborn, J. E., Survey of meshless and generalized finite element methods: a unified approach, Acta Numerica, 12, 1-125, (2003) · Zbl 1048.65105 · doi:10.1017/s0962492902000090
[4] Babuska, I.; Nistor, V.; Tarfulea, N., Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions, Journal of Computational and Applied Mathematics, 218, 1, 175-183, (2008) · Zbl 1153.65106 · doi:10.1016/j.cam.2007.04.041
[5] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Computer Methods in Applied Mechanics and Engineering, 190, 32-33, 4081-4193, (2001) · Zbl 0997.74069 · doi:10.1016/s0045-7825(01)00188-8
[6] De, S.; Bathe, K. J., The method of finite spheres, Computational Mechanics, 25, 4, 329-345, (2000) · Zbl 0952.65091 · doi:10.1007/s004660050481
[7] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, 20, 8-9, 1081-1106, (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[8] Dolbow, J.; Moës, N.; Belytschko, T., Discontinuous enrichment in finite elements with a partition of unity method, Finite Elements in Analysis and Design, 36, 3, 235-260, (2000) · Zbl 0981.74057 · doi:10.1016/s0168-874x(00)00035-4
[9] Oh, H.-S.; Kim, J. G.; Jeong, J., The closed form reproducing polynomial particle shape functions for meshfree particle methods, Computer Methods in Applied Mechanics and Engineering, 196, 35-36, 3435-3461, (2007) · Zbl 1173.65303 · doi:10.1016/j.cma.2007.03.012
[10] Duarte, C. A.; Oden, J. T., An \(h\)-\(p\) adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering, 139, 1–4, 237-262, (1996) · Zbl 0918.73328 · doi:10.1016/s0045-7825(96)01085-7
[11] Hong, W.-T.; Lee, P.-S., Mesh based construction of flat-top partition of unity functions, Applied Mathematics and Computation, 219, 16, 8687-8704, (2013) · Zbl 1288.65167 · doi:10.1016/j.amc.2013.02.055
[12] Babuška, I.; Banerjee, U.; Osborn, J. E., Generalized finite element methods—main ideas, results and perspective, International Journal of Computational Methods, 1, 1, 67-103, (2004) · Zbl 1081.65107 · doi:10.1142/s0219876204000083
[13] Babuška, I.; Banerjee, U.; Osborn, J. E., On principles for the selection of shape functions for the generalized finite element method, Computer Methods in Applied Mechanics and Engineering, 191, 49-50, 5595-5629, (2002) · Zbl 1016.65052 · doi:10.1016/s0045-7825(02)00467-x
[14] Hong, W.-T., Enriched meshfree method for an accurate numerical solution of the Motz problem, Advances in Mathematical Physics, 2016, (2016) · Zbl 1416.65451 · doi:10.1155/2016/6324754
[15] Xiao, Q. Z.; Karihaloo, B. L., Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery, International Journal for Numerical Methods in Engineering, 66, 9, 1378-1410, (2006) · Zbl 1122.74529 · doi:10.1002/nme.1601
[16] Chahine, E.; Laborde, P.; Renard, Y., Crack tip enrichment in the XFEM using a cutoff function, International Journal for Numerical Methods in Engineering, 75, 6, 629-646, (2008) · Zbl 1195.74167 · doi:10.1002/nme.2265
[17] Natarajan, S.; Bordas, S.; Mahapatra, D., Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping, International Journal for Numerical Methods in Engineering, 80, 1, 103-134, (2009) · Zbl 1176.74190 · doi:10.1002/nme.2589
[18] Natarajan, S.; Mahapatra, D. R.; Bordas, S. P., Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework, International Journal for Numerical Methods in Engineering, 83, 3, 269-294, (2010) · Zbl 1193.74153 · doi:10.1002/nme.2798
[19] Ventura, G.; Gracie, R.; Belytschko, T., Fast integration and weight function blending in the extended finite element method, International Journal for Numerical Methods in Engineering, 77, 1, 1-29, (2009) · Zbl 1195.74201 · doi:10.1002/nme.2387
[20] Mousavi, S. E.; Sukumar, N., Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Computational Mechanics, 47, 5, 535-554, (2011) · Zbl 1221.65078 · doi:10.1007/s00466-010-0562-5
[21] Sudhakar, Y.; Wall, W. A., Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Computer Methods in Applied Mechanics and Engineering, 258, 39-54, (2013) · Zbl 1286.65037 · doi:10.1016/j.cma.2013.01.007
[22] Oh, H.-S.; Jeong, J. W., Almost everywhere partition of unity to deal with essential boundary conditions in meshless methods, Computer Methods in Applied Mechanics and Engineering, 198, 41–44, 3299-3312, (2009) · Zbl 1230.74231 · doi:10.1016/j.cma.2009.06.013
[23] Ciarlet, P., Basis Error Estimates for Elliptic Problems, 2, (1991), North Holland · Zbl 0875.65086
[24] Szabo, B.; Babuska, I., Finite Element Analysis. Finite Element Analysis, A Wiley-Interscience Publication, (1991), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0792.73003
[25] Lucas, T. R.; Oh, H. S., The method of auxiliary mapping for the finite element solutions of elliptic problems containing singularities, Journal of Computational Physics, 108, 2, 327-342, (1993) · Zbl 0797.65083 · doi:10.1006/jcph.1993.1186
[26] Oh, H.-S.; Davis, C.; Kim, J. G.; Kwon, Y., Reproducing polynomial particle methods for boundary integral equations, Computational Mechanics, 48, 1, 27-45, (2011) · Zbl 1273.65189 · doi:10.1007/s00466-011-0581-x
[27] Tian, R.; Yagawa, G.; Terasaka, H., Linear dependence problems of partition of unity-based generalized FEMs, Computer Methods in Applied Mechanics and Engineering, 195, 37–40, 4768-4782, (2006) · Zbl 1125.65073 · doi:10.1016/j.cma.2005.06.030
[28] Oh, H.-S.; Kim, J. G.; Hong, W.-T., The piecewise polynomial partition of unity functions for the generalized finite element methods, Computer Methods in Applied Mechanics and Engineering, 197, 45–48, 3702-3711, (2008) · Zbl 1197.65185 · doi:10.1016/j.cma.2008.02.035
[29] Oh, H.-S.; Jeong, J. W.; Hong, W. T., The generalized product partition of unity for the meshless methods, Journal of Computational Physics, 229, 5, 1600-1620, (2010) · Zbl 1180.65152 · doi:10.1016/j.jcp.2009.10.047
[30] Oh, H. S.; Babuŝka, I., The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities, Journal of Computational Physics, 121, 2, 193-212, (1995) · Zbl 0833.73061 · doi:10.1016/s0021-9991(95)90017-9
[31] Hong, W.-T.; Lee, P.-S., Coupling flat-top partition of unity method and finite element method, Finite Elements in Analysis and Design, 67, 43-55, (2013) · Zbl 1287.65107 · doi:10.1016/j.finel.2012.12.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.