×

Implementation, capabilities, and benchmarking of shift, a massively parallel Monte Carlo radiation transport code. (English) Zbl 1351.82083

Summary: This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package authored at Oak Ridge National Laboratory. Shift has been developed to scale well from laptops to small computing clusters to advanced supercomputers and includes features such as support for multiple geometry and physics engines, hybrid capabilities for variance reduction methods such as the Consistent Adjoint-Driven Importance Sampling methodology, advanced parallel decompositions, and tally methods optimized for scalability on supercomputing architectures. The scaling studies presented in this paper demonstrate good weak and strong scaling behavior for the implemented algorithms. Shift has also been validated and verified against various reactor physics benchmarks, including the Consortium for Advanced Simulation of Light Water Reactors’ Virtual Environment for Reactor Analysis criticality test suite and several Westinghouse \(AP1000^{\circledR}\) problems presented in this paper. These benchmark results compare well to those from other contemporary Monte Carlo codes such as MCNP5 and KENO.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65C05 Monte Carlo methods
65Y05 Parallel numerical computation
65Y15 Packaged methods for numerical algorithms
82D75 Nuclear reactor theory; neutron transport
Full Text: DOI

References:

[1] Evans, T. M.; Stafford, A. S.; Slaybaugh, R.; Clarno, K. T., Denovo: a new three-dimensional parallel discrete ordinates code in SCALE, Nucl. Technol., 171, 171-200 (2010)
[2] Jarrell, J. J.; Evans, T. M.; Davidson, G. G.; Godfrey, A. T., Full core reactor analysis: running denovo on jaguar, Nucl. Sci. Eng., 175, 283-291 (2013)
[3] CASL: improving reactor performance with predictive science-based simulation technology that harnesses world-class computational power (2014), Oak Ridge National Laboratory, Tech. rep. CASL-U-2014-0089-000
[4] Cheverton, R. D.; Sims, T. M., HFIR core nuclear design (1971), Oak Ridge National Laboratory, Tech. rep. ORNL-4621
[5] Cashwell, E. D.; Everett, C. J., A practical manual on the Monte Carlo method for random walk problems (1957), Los Alamos Scientific Laboratory, Tech. rep. LA-2120
[6] Carter, L. L.; Cashwell, E. D., Particle-transport simulation with the Monte Carlo method (1975), Los Alamos Scientific Laboratory, Tech. rep. 26607
[7] SCALE: a comprehensive modeling and simulation suite for nuclear safety analysis and design (2011), Oak Ridge National Laboratory, Tech. rep. ORNL/TM-2005/39, version 6.1
[8] MCNP - a general Monte Carlo n-particle transport code, version 5 (2008), Los Alamos National Laboratory, Tech. rep. LA-UR-03-1987
[9] Urbatsch, T. J., Iterative acceleration methods for Monte Carlo and deterministic criticality calculations (November 1995), Los Alamos National Laboratory, Thesis LA-13052-T
[10] Montgomery, R., VERA tools and workflows (March 2014), Oak Ridge National Laboratory, Technical report CASL-U-2014-0054-001
[11] Mosher, S. W.; Bevill, A. M.; Johnson, S. R.; Ibrahim, A. M.; Daily, C. R.; Evans, T. M.; Wagner, J. C.; Johnson, J. O.; Grove, R. E., ADVANTG—an automated variance reduction parameter generator (2013), Oak Ridge National Laboratory, Tech. rep. ORNL/TM-2013/416
[12] Emmett, M. B., MORSE-CGA: a general purpose Monte Carlo multigroup neutron and gamma-ray transport code system with array geometry capability, version 2 (1985), Oak Ridge National Laboratory, Tech. rep. ORNL-6174
[13] Cross Sections Evaluation Working Group, ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files ENDF/B-VI and ENDF/B-VII (December 2011), Brookhaven National Laboratory
[14] Dunn, M. E.; Greene, N. M., AMPX-2000: a cross-section processing system for generating nuclear data for criticality safety applications, Trans. Am. Nucl. Soc., 86, 118 (2002)
[15] Childs, H.; Brugger, E.; Whitlock, B.; Meredith, J.; Ahern, S.; Pugmire, D.; Biagas, K.; Miller, M.; Harrison, C.; Weber, G. H.; Krishnan, H.; Fogal, T.; Sanderson, A.; Garth, C.; Bethel, E. W.; Camp, D.; Rübel, O.; Durant, M.; Favre, J. M.; Navrátil, P., VisIt: an end-user tool for visualizing and analyzing very large data, (High Performance Visualization-Enabling Extreme-Scale Scientific Insight (2012), CRC: CRC Hoboken), 357-372
[16] Ueki, T.; Brown, F. B., Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations, Nucl. Sci. Eng., 149, 1, 38-50 (2005)
[17] Wagner, J.; Haghighat, A., Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function, Nucl. Sci. Eng., 128, 2, 186-208 (1998)
[18] Johnson, S. R., Fast mix table construction for material discretization, (Proc. Intl. Conf. on Math. and Comput. Methods Applied to Nucl. Sci. Eng.. Proc. Intl. Conf. on Math. and Comput. Methods Applied to Nucl. Sci. Eng., M&C 2013, Sun Valley, ID, May 5-9 (2013))
[19] Wagner, J. C.; Mosher, S. W.; Evans, T. M.; Peplow, D. E.; Turner, J. A., Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses, (Progress in Nuclear Science Technology, vol. 2 (2011)), 815-820
[20] Brunner, T. A.; Urbatsch, T. J.; Evans, T. M.; Gentile, N. A., Comparison of four parallel algorithms for domain decomposed implicit Monte Carlo, J. Comput. Phys., 212, 527-539 (2006) · Zbl 1083.65002
[21] Brunner, T. A.; Brantley, P. S., An efficient, robust, domain-decomposition algorithm for particle Monte Carlo, J. Comput. Phys., 228, 3882-3890 (2009) · Zbl 1165.80300
[22] Romano, P.; Forget, B., Parallel fission bank algorithms in Monte Carlo criticality calculations, Nucl. Sci. Eng., 170, 125-135 (2012)
[24] VESTA user’s manual - version 2.1.0 (2008), Tech. rep. DSU/SEC/T/2008-331, IRSN, BP 17, 92262 Fontenay-aux-roses, Cedex, France
[25] Trellue, H. R.; Poston, D. I., User’s manual, version 2.0 for Monteburns, version 1.0 (September 1999), LANL, Tech. rep. LA-UR-99-4999
[26] Isotalo, A. E.; Sahlberg, V., Comparison of neutronics-depletion schemes for burnup calculations, Nucl. Sci. Eng., 179, 4, 434-459 (2015)
[27] Isotalo, A. E., Comparison of neutronics-depletion coupling schemes for burnup calculations 2, Nucl. Sci. Eng., 180, 3, 286-300 (2015)
[28] Hoogenboom, J.; Martin, W.; Petrovic, B., Monte Carlo performance benchmark for detailed power density calculation in a full size reactor core (2011), Benchmark Specifications Revision 1.2
[29] Newman, L. W.; Wittkopf, W. A.; Pettus, W. G.; Baldwin, M. N.; Hassan, H. A.; Uotinen, V. O.; Connell, J. D.; Campbell, P. S., Urania-Gadolinia: nuclear model development and critical experiment benchmark (April 1984), Babcock and Wilcox Co.: Babcock and Wilcox Co. Lynchburg, VA, Tech. rep. DOE/ET/34212-41 BAW-1810
[30] Godfrey, A. T., VERA core physics benchmark progression problem specifications (March 2014), CASL, Tech. rep. CASL-U-2012-0131-003
[31] Gehin, J. C.; Godfrey, A. T.; Franceschini, F.; Evans, T. M.; Collins, B.; Hamilton, S., Operational reactor model demonstration with VERA: watts bar unit 1 cycle 1 zero power physics tests (August 2013), CASL, Tech. rep. CASL-U-2013-0105-001
[32] Godfrey, A. T., MPACT testing and benchmarking results (March 2014), CASL, Tech. rep. CASL-U-2014-0045-000
[33] Franceschini, F.; Godfrey, A. T.; Kulesza, J.; Oelrich, R., Westinghouse VERA test stand: zero power physics test simulations for the AP1000 PWR (March 2014), CASL, Tech. rep. CASL-U-2014-0012-000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.