×

Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model. (English) Zbl 1351.76097

Summary: In this paper, we present an anti-diffusive method dedicated to the simulation of interface flows on Cartesian grids involving an arbitrary number \(m\) of compressible components. Our work is two-fold: first, we introduce a \(m\) -component flow model that generalizes a classic two material five-equation model. In that way, interfaces are localized using color function discontinuities and a pressure equilibrium closure law is used to complete this new model. The resulting model is demonstrated to be hyperbolic under simple assumptions and consistent. Second, we present a discretization strategy for this model relying on a Lagrange-Remap scheme. Here, the projection step involves an anti-dissipative mechanism allowing to prevent numerical diffusion of the material interfaces. The proposed solver is built ensuring consistency and stability properties but also that the sum of the color functions remains equal to one. The resulting scheme is first order accurate and conservative for the mass, momentum, energy and partial masses. Furthermore, the obtained discretization preserves Riemann invariants like pressure and velocity at the interfaces. Finally, validation computations of this numerical method are performed on several tests in one and two dimensions. The accuracy of the method is also compared to results obtained with the upwind Lagrange-Remap scheme.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T30 Three or more component flows
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach, J. Comput. Phys., 125, 1, 150-160 (1996) · Zbl 0847.76060
[2] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 2, 594-623 (2001) · Zbl 1033.76029
[3] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the numerical simulation of interfaces in two-phase flows, C. R. Acad. Sci. Paris, Ser. I, Math., 331, 12, Part 1, 1017-1022 (2000) · Zbl 1010.76055
[4] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 2, 577-616 (2002) · Zbl 1169.76407
[5] Batten, P.; Clarke, N.; Lambert, C.; Causon, D. M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput., 18, 1553-1570 (1997) · Zbl 0992.65088
[6] Braconnier, B.; Nkonga, B., An all-speed relaxation scheme for interface flows with surface tension, J. Comput. Phys., 228, 16, 5722-5739 (2009) · Zbl 1280.76032
[7] Billaud Friess, M.; Boutin, B.; Caetano, F.; Faccanoni, G.; Kokh, S.; Lagoutière, F.; Navoret, L., A second order antidiffusive Lagrange-Remap scheme for two-component flows, (ESAIM Proc., vol. 32 (2011)), 149-162 · Zbl 1302.76128
[8] Billaud Friess, M.; Kokh, S., An anti-diffusive Lagrange-Remap scheme for multi-material compressible flows with an arbitrary number of component, (ESAIM Proc., vol. 35 (2012)), 203-209 · Zbl 1357.76075
[9] Bouchut, F., Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources, Front. Math. Ser. (2004), Birkhäuser · Zbl 1086.65091
[10] Boyer, F.; Lapuerta, C., Study of a three component Cahn-Hilliard flow model, ESAIM: Math. Model. Numer., 40, 4, 653-687 (2006) · Zbl 1173.35527
[11] Boyer, F.; Lapuerta, C.; Minjeaud, S.; Piar, B.; Quintard, M., Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media, 82, 3, 463-483 (2010)
[12] Boyer, F.; Minjeaud, S., Numerical schemes for a three component Cahn-Hilliard model, ESAIM: Math. Model. Numer., 45, 4, 697-738 (2011) · Zbl 1267.76127
[13] Coquel, F.; Godlewski, E.; Perthame, B.; In, A.; Rascle, P., Some new Godunov and relaxation methods for two-phase flow problems, (Godunov Methods. Godunov Methods, Oxford, 1999 (2001), Kluwer/Plenum: Kluwer/Plenum New York), 179-188 · Zbl 1064.76545
[14] Chern, I.-L.; Glimm, J.; McBryan, O.; Plohr, B.; Yaniv, S., Front tracking for gas dynamics, J. Comput. Phys., 62, 1, 83-110 (1986) · Zbl 0577.76068
[15] Dellacherie, S., Relaxation schemes for the multicomponent Euler system, ESAIM: Math. Model. Numer., 37, 6, 909-936 (2003) · Zbl 1070.76037
[16] Del Pino, S., Metric-based mesh adaptation for 2D Lagrangian compressible flows, J. Comput. Phys., 230, 5, 1793-1821 (2011) · Zbl 1391.76536
[17] Després, B.; Lagoutière, F., Un schéma non linéaire anti-dissipatif pour l’équation d’advection linéaire, C. R. Acad. Sci. Paris, Ser. I, Math., 328, 10, 939-943 (1999) · Zbl 0944.76053
[18] Després, B.; Lagoutière, F., Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput., 16, 4, 479-524 (2001) · Zbl 0999.76091
[19] Després, B.; Lagoutière, F., Numerical resolution of a two-component compressible fluid model with interfaces, Prog. Comput. Fluid Dyn., 7, 6, 295-310 (2007) · Zbl 1152.76443
[20] Després, B., Lois de Conservations Eulériennes, Lagrangiennes et Méthodes Numériques, (Math. Appl., vol. 68 (2010), SMAI, Springer) · Zbl 1348.35002
[21] Després, B.; Lagoutière, F.; Labourasse, E.; Marmajou, I., An anti-dissipative transport scheme on unstructured meshes for multicomponent flows, Int. J. Finite, 7, 30-65 (2010)
[22] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 1, 83-116 (2002) · Zbl 1021.76044
[23] Faucher, V.; Kokh, S., Extended Vofire algorithm for fast transient fluid-structure dynamics with liquid-gas flows and interfaces, J. Fluids Struct., 39, 102-125 (2013)
[24] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[25] Galéra, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 16, 5755-5787 (2010) · Zbl 1346.76105
[26] Galéra, S.; Breil, J.; Maire, P.-H., A 2D unstructured multi-material Cell-Centered Arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction, Comput. Fluids, 46, 1, 237-244 (2011) · Zbl 1432.76215
[27] Daude, F.; Galon, P.; Gao, Z.; Blaud, E., Numerical experiments using a HLLC-type scheme with ALE formulation for compressible two-phase flows five-equation models with phase transition, Comput. Fluids, 94, 112-138 (2014) · Zbl 1391.76397
[28] Glimm, J.; McBryan, O., A computational model for interfaces, Adv. Appl. Math., 6, 4 (1985)
[29] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci. (1996), Springer · Zbl 1063.65080
[30] Haas, J. F.; Sturtevant, B., Interaction of a weak shock wave with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181, 41-76 (1987)
[31] Harten, A., On a class of high resolution total-variation-stable finite difference schemes, SIAM J. Numer. Anal., 21, 1-23 (1984) · Zbl 0547.65062
[32] Code HERACLES · Zbl 1329.76401
[33] Hirt, C. W.; Nichols, B. D., Vol. of Fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-205 (1981) · Zbl 0462.76020
[34] Jaouen, S.; Lagoutière, F., Numerical transport of an arbitrary number of components, Comput. Methods Appl. Math., 196, 33-34, 3127-3140 (2007) · Zbl 1173.76364
[35] Juric, D.; Tryggvason, G., A front tracking method for dendritic solidification, J. Comput. Phys., 123, 1, 127-148 (1996) · Zbl 0843.65093
[36] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys., 112, 1, 31-43 (1994) · Zbl 0811.76044
[37] Karni, S., Hybrid multifluid algorithms, SIAM J. Sci. Comput., 17, 5, 1019-1039 (1996) · Zbl 0860.76056
[38] Kucharik, M.; Garimella, R. V.; Schofield, S. P.; Shashkov, M. J., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. Comput. Phys., 229, 7, 2432-2452 (2010) · Zbl 1423.76343
[39] Kokh, S.; Lagoutière, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J. Comput. Phys., 229, 8, 2773-2809 (2010) · Zbl 1302.76129
[40] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys., 113, 1, 134-147 (1994) · Zbl 0809.76064
[41] Lagoutière, F., Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants (2000), Université Pierre et Marie Curie, Ph.D. thesis
[42] Le Roux, A.-Y., A numerical conception of entropy for quasi-linear equations, Math. Comput., 31, 140, 848-872 (1977) · Zbl 0378.65053
[43] Liu, T. G.; Khoo, B. C.; Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190, 2, 651-681 (2003) · Zbl 1076.76592
[44] Massoni, J.; Saurel, R.; Nkonga, B.; Abgrall, R., Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer, Int. J. Heat Mass Transf., 45, 6, 1287-1307 (2002) · Zbl 1121.76378
[45] Mulder, W.; Osher, S.; Sethian, J. A., Computing interface motion in compressible gas dynamics, J. Comput. Phys., 100, 2, 209-228 (1992) · Zbl 0758.76044
[46] Nguyen, D.; Gibou, F.; Fedkiw, R., A fully conservative ghost fluid method & stiff detonation waves, (12th Int. Detonation Symposium. 12th Int. Detonation Symposium, San Diego, CA (2002))
[47] Osher, S.; Sethian, J. A., Fronts propagating with curvature dependant speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[48] Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[49] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279 (1961)
[50] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 2, 425-467 (1999) · Zbl 0937.76053
[51] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 3, 1115-1145 (1999) · Zbl 0957.76057
[52] Suliciu, I., On modelling phase transitions by means of rate-type constitutive equations, shock wave structure, Int. J. Eng. Sci., 28, 829-841 (1990) · Zbl 0738.73007
[53] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 567-603 (1999)
[54] Sethian, J. A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences, Cambr. Monogr. Appl. Comput. Math. (1996) · Zbl 0859.76004
[55] Sijoy, C. D.; Chaturvedi, S., Volume-of-fluid algorithm with different modified dynamic material ordering methods and their comparisons, J. Comput. Phys., 229, 10, 3848-3863 (2010) · Zbl 1423.76307
[56] Shyue, K. M., An efficient shock-capturing algorithm for compressible multicomponent problems, J. Comput. Phys., 142, 1, 208-242 (1998) · Zbl 0934.76062
[57] Shyue, K. M., A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state, J. Comput. Phys., 156, 1, 43-88 (1999) · Zbl 0957.76039
[58] Shyue, K. M., A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Grüneisen equation of state, J. Comput. Phys., 171, 2, 678-707 (2001) · Zbl 1047.76573
[59] Springel, V., E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron. Soc., 40, 2, 791-851 (2010)
[60] Quirk, J. J.; Karni, S., On the dynamics of a shock-bubble interaction, J. Fluid Mech., 328, 129-163 (1996) · Zbl 0877.76046
[61] Terashima, H.; Tryggvason, G., A front-tracking/ghost-fluid method for fluid interfaces in compressible flows, J. Comput. Phys., 2, 213, 4012-4037 (2009) · Zbl 1171.76046
[62] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (1999), Springer-Verlag · Zbl 0923.76004
[63] Unverdi, S. O.; Tryggvason, G., A front tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 1, 25-37 (1992) · Zbl 0758.76047
[64] Wang, C. W.; Liu, T. G.; Khoo, B. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput., 28, 1, 278-302 (2006) · Zbl 1114.35119
[65] Wu, Z. D.; Sun, L.; Zong, Z., A mass-fraction-based interface-capturing method for multi-component flow, Int. J. Numer. Methods Fluids, 73, 1, 74-102 (2013) · Zbl 1455.65153
[66] Yokoi, K., A variational approach to motion of triple junction of gas, liquid and solid, Comput. Phys. Commun., 180, 7, 1145-1149 (2009) · Zbl 1198.76105
[67] Zhao, H. K.; Chan, T.; Merriman, B.; Osher, S., A variational level set approach to multiphase motion, J. Comput. Phys., 127, 1, 179-195 (1996) · Zbl 0860.65050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.