×

A high-precision calculation method for interface normal and curvature on an unstructured grid. (English) Zbl 1351.76287

Summary: In the volume-of-fluid algorithm, the calculations of the interface normal and curvature are crucially important for accurately simulating interfacial flows. However, few methods have been proposed for the high-precision interface calculation on an unstructured grid. In this paper, the authors develop a height function method that works appropriately on an unstructured grid. In the process, the definition of the height function is discussed, and the high-precision calculation method of the interface normal is developed to meet the necessary condition for a second-order method. This new method has highly reduced computational cost compared with a conventional high-precision method because the interface normal calculation is completed by solving relatively simple algebraic equations. The curvature calculation method is also discussed and the approximated quadric curve of an interface is employed to calculate the curvature. Following a basic verification, the developed height function method is shown to successfully provide superior calculation accuracy and highly reduced computational cost compared with conventional calculation methods in terms of the interface normal and curvature. In addition, the height function method succeeds in calculating accurately the slotted-disk revolution problem and the oscillating drop on unstructured grids. Therefore, the developed height function method is confirmed to be an efficient technique for the high-precision numerical simulation of interfacial flows on an unstructured grid.

MSC:

76Txx Multiphase and multicomponent flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

SLIC
Full Text: DOI

References:

[1] Debar, R., A method in two-D Eulerian hydrodynamics (March 1974), Lawrence Livermore National Laboratory, Technical Report UCID-19683
[2] Chorin, A. J., Flame advection and propagation algorithms, J. Comput. Phys., 35, 1-11 (1980) · Zbl 0425.76086
[3] Eguchi, Y.; Yamamoto, K.; Funada, T.; Tanaka, N.; Moriya, S.; Tanimoto, K.; Ogura, K.; Suzuki, K.; Maekawa, I., Gas entrainment in the IHX of top-entry loop-type LMFBR, Nucl. Eng. Des., 146, 373-381 (1984)
[4] Kimura, N.; Hayashi, K.; Igarashi, M.; Kamide, H.; Itoh, M.; Sekine, T., Experimental study on flow optimization in upper plenum of reactor vessel for a compact sodium cooled fast reactor, Nucl. Technol., 152, 210-222 (2005)
[5] Sakai, T.; Eguchi, Y.; Monji, H.; Ito, K.; Ohshima, H., Proposal of design criteria for gas entrainment from vortex dimples based on a computational fluid dynamics method, Heat Transf. Eng., 29, 731-739 (2008)
[6] Ito, K.; Eguchi, Y.; Monji, H.; Ohshima, H.; Uchibori, A.; Xu, Y., Improvement of gas entrainment evaluation method - introduction of surface tension effect, J. Nucl. Sci. Technol., 47, 771-778 (2010)
[7] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, (Morton, K. W.; Baines, M. J., Numerical Methods for Fluid Dynamics (1982), American Press: American Press New York), 273-486 · Zbl 0537.76071
[8] Rider, W.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[9] Parker, B. J.; Youngs, D. L., Two and three dimensional Eulerian simulation of fluid flow with material interfaces (1992), UK Atomic Weapons Establishment
[10] Ito, K.; Kunugi, T.; Ohshima, H.; Kawamura, T., Formulations and validations of a high-precision volume-of-fluid algorithm on non-orthogonal meshes for numerical simulations of gas entrainment phenomena, J. Nucl. Sci. Technol., 46, 366-373 (2009)
[11] Pilliod, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys., 199, 464-502 (2004) · Zbl 1126.76347
[12] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Int. J. Numer. Methods Fluids, 41, 251-274 (2003) · Zbl 1047.76080
[13] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split advection in three-dimensional Cartesian geometry, J. Comput. Phys., 225, 2301-2319 (2007) · Zbl 1118.76048
[14] Ashgriz, N.; Barbat, T.; Wang, G., A computational Lagrangian-Eulerian advection remap for free surface flows, Int. J. Numer. Methods Fluids, 44, 1-32 (2004) · Zbl 1062.76041
[15] Shahbazi, K.; Paraschivoiu, M.; Mostaghimi, J., Second order accurate volume tracking based on remapping for triangular meshes, J. Comput. Phys., 188, 100-122 (2003) · Zbl 1127.76337
[16] Mosso, S. J.; Swartz, B. K.; Kothe, D. B.; Clancy, S. P., Recent enhancements of volume tracking algorithms for irregular grids (1996), Los Alamos National Laboratory, Technical Report LA-CP-96-227
[17] Ferdowsi, P. A.; Bussmann, M., Second-order accurate normals from height function, J. Comput. Phys., 227, 9293-9302 (2008) · Zbl 1231.65246
[18] Brackbill, J., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[19] Cummins, S.; Francois, M. M.; Kothe, D. B., Estimating curvature from volume fractions, Comput. Struct., 83, 425-434 (2005)
[20] Ito, K.; Kunugi, T.; Ohshima, H.; Kawamura, T., A volume-conservative PLIC algorithm on three-dimensional fully unstructured meshes, Comput. Fluids, 88, 250-261 (2013) · Zbl 1391.76777
[21] Helmsen, J.; Colella, P., Non-convex profile evolution in two dimensions using volume of fluids (1997), Lawrence Livermore National Laboratory, UCRL-ID-126402
[22] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithm for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
[23] Rudman, M., Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids, 24, 671-691 (1997) · Zbl 0889.76069
[24] Noh, W. F.; Woodward, P. R., SLIC (Simple Linear Interface Calculation), (van der Vooren, A. I.; Zandbergen, P. J., Lecture Notes in Physics, vol. 59 (1976), Springer-Verlag: Springer-Verlag New York), 330-340 · Zbl 0382.76084
[25] Hirt, C. W.; Nichols, D. B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-205 (1981) · Zbl 0462.76020
[26] Torres, D. J.; Brackbill, J. U., The point-set method: front-tracking without connectivity, J. Comput. Phys., 165, 620-644 (2000) · Zbl 0998.76070
[27] Francois, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys., 213, 141-173 (2006) · Zbl 1137.76465
[28] Scardovelli, R.; Zaleski, S., Analytical relations connecting linear interface and volume functions in rectangular grids, J. Comput. Phys., 164, 228-237 (2000) · Zbl 0993.76067
[29] Yang, X.; James, A. J., Analytical relations for reconstructing piecewise linear interfaces in triangular and tetrahedral grids, J. Comput. Phys., 214, 41-54 (2006) · Zbl 1137.76456
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.