×

Discontinuous Galerkin methods for solving Boussinesq-Green-Naghdi equations in resolving non-linear and dispersive surface water waves. (English) Zbl 1351.76074

Summary: A local discontinuous Galerkin method for Boussinesq-Green-Naghdi equations is presented and validated against experimental results for wave transformation over a submerged shoal. Currently Green-Naghdi equations have many variants. In this paper a numerical method in one dimension is presented for the Green-Naghdi equations based on rotational characteristics in the velocity field. Stability criterion is also established for the linearized Green-Naghdi equations for both the analytical problem and the numerical method. Verification is done against a linearized standing wave problem in flat bathymetry and \(h\) , \(p\) (denoted by \(K\) in this paper) error rates are plotted. Validation plots show good agreement of the numerical results with the experimental ones.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Aizinger, V.; Dawson, C., A discontinuous Galerkin method for two-dimensional flow and transport in shallow water, Adv. Water Resour., 25, 1, 67-84 (2002)
[2] Arnold, D. N., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[3] Atkinson, K.; Weimin, H., Theoretical Numerical Analysis, vol. 39 (2005), Springer · Zbl 1068.47091
[4] Bassi, F.; Rebay, S., A high order discontinuous Galerkin method for compressible turbulent flows, (Discontinuous Galerkin Methods (2000), Springer: Springer Berlin, Heidelberg), 77-88 · Zbl 0991.76039
[5] Beji, S.; Battjes, J. A., Experimental investigation of wave propagation over a bar, Coast. Eng., 19, 1, 151-162 (1993)
[6] Bonneton, P., A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230, 4, 1479-1498 (2011) · Zbl 1391.76066
[7] Brenner, Susanne C.; Scott, R., The Mathematical Theory of Finite Element Methods, vol. 15 (2008), Springer · Zbl 1135.65042
[8] Chan, R. K.-C.; Street, R. L., A computer study of finite-amplitude water waves, J. Comput. Phys., 6, 1, 68-94 (1970) · Zbl 0207.27403
[9] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., The Development of Discontinuous Galerkin Methods (2000), Springer · Zbl 0989.76045
[10] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059
[11] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[12] Cockburn, B., Discontinuous Galerkin methods, Z. Angew. Math. Mech., 83, 11, 731-754 (2003) · Zbl 1036.65079
[13] Dawson, C., Discontinuous Galerkin methods for modeling Hurricane storm surge, Adv. Water Resour., 34, 9, 1165-1176 (2011)
[14] Dean, R. G.; Dalrymple, R. A., Water Wave Mechanics for Engineers and Scientists (1991), World Scientific
[15] Dingemans, M. W., Comparison of computations with Boussinesq-like models and laboratory measurements (1994), Mast-G8M technical report H 1684
[16] Engsig-Karup, A. P., Unstructured nodal DG-FEM solution of high-order Boussinesq-type equations (2006), Technical University: Technical University Denmark, PhD thesis · Zbl 1200.76121
[17] Engsig-Karup, A. P., Nodal DG-FEM solution of high-order Boussinesq-type equations, J. Eng. Math., 56, 3, 351-370 (2006) · Zbl 1200.76121
[18] Eskilsson, C.; Sherwin, S. J., Spectral hp discontinuous Galerkin methods for modelling 2D Boussinesq equations, J. Comput. Phys., 212, 2, 566-589 (2006) · Zbl 1084.76058
[19] Green, A. E.; Naghdi, P. M., A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78, 2, 237-246 (1976) · Zbl 0351.76014
[20] Gobbi, M. F.; Kirby, J. T., Wave evolution over submerged sills: tests of a high-order Boussinesq model, Coast. Eng., 37, 1, 57-96 (1999)
[21] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54 (2008), Springer-Verlag: Springer-Verlag New York · Zbl 1134.65068
[22] Kirby, R. M.; Karniadakis, G. E., De-aliasing on non-uniform grids: algorithms and applications, J. Comput. Phys., 191, 1, 249-264 (2003) · Zbl 1161.76534
[23] Kennedy, A. B., Boussinesq modeling of wave transformation, breaking, and runup. I: 1D, J. Waterw. Port Coast. Ocean Eng., 126, 1, 39-47 (2000)
[24] Kennedy, A. B.; Kirby, J. T.; Gobbi, M. F., Simplified higher-order Boussinesq equations: I. Linear simplifications, Coast. Eng., 44, 3, 205-229 (2002)
[25] Kubatko, E. J.; Westerink, J. J.; Dawson, C., hp discontinuous Galerkin methods for advection dominated problems in shallow water flow, Comput. Methods Appl. Mech. Eng., 196, 1, 437-451 (2006) · Zbl 1120.76348
[26] Lannes, D.; Bonneton, P., Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Phys. Fluids, 21, 1, 016601 (2009) · Zbl 1183.76294
[27] Madsen, Per A.; Agnon, Y., Accuracy and convergence of velocity formulations for water waves in the framework of Boussinesq theory, J. Fluid Mech., 477, 1, 285-319 (2003) · Zbl 1063.76526
[28] Madsen, Per A.; Sørensen, Ole R., A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry, Coast. Eng., 18, 3, 183-204 (1992)
[29] Madsen, Per A.; Sørensen, O. R.; Schäffer, H. A., Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves, Coast. Eng., 32, 4, 255-287 (1997)
[30] Maxworthy, T., Experiments on collisions between solitary waves, J. Fluid Mech., 76, 01, 177-186 (1976)
[31] Nwogu, O., Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterw. Port Coast. Ocean Eng., 119, 6, 618-638 (1993)
[32] Peregrine, D. H., Long waves on a beach, J. Fluid Mech., 27, 815-827 (1967) · Zbl 0163.21105
[33] Power, H.; Chwang, A. T., On reflection of a planar solitary wave at a vertical wall, Wave Motion, 6, 2, 183-195 (1984) · Zbl 0545.76021
[34] Serre, F., Contribution à l’étude des écoulements permanents et variables dans les canaux, Houille Blanche, 6, 830-872 (1953)
[35] Schäffer, H. A.; Madsen, Per A.; Deigaard, R., A Boussinesq model for waves breaking in shallow water, Coast. Eng., 20, 3, 185-202 (1993)
[36] Shields, J. J.; Webster, W. C., On direct methods in water-wave theory, J. Fluid Mech., 197, 1, 171-199 (1988) · Zbl 0658.76011
[37] Su, C. H.; Mirie, R. M., On head-on collisions between two solitary waves, J. Fluid Mech., 98, 3, 509-525 (1980) · Zbl 0434.76021
[38] Webster, W.; Kim, D. Y., The dispersion of large-amplitude gravity waves in deep water, (Naval Hydrodynamics 18th Symposium (1991), National Academy Press: National Academy Press Washington DC), 397
[39] Yan, J.; Shu, C. W., A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40, 2, 769-791 (2002) · Zbl 1021.65050
[40] Zhang, Y., Boussinesq-Green-Naghdi rotational water wave theory, Coast. Eng., 73, 13-27 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.