×

Ensemble Kalman filters for dynamical systems with unresolved turbulence. (English) Zbl 1351.76031

Summary: Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ’representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to \(k^{- 5 / 6}\) (where \(k\) is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy, even an accurate estimate of the large-scale part of the system does not provide an accurate estimate of the true state. By providing simultaneous estimates of both the large- and small-scale parts of the solution, the new framework is able to provide accurate estimates of the true system state.

MSC:

76F20 Dynamical systems approach to turbulence
86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics

Software:

CRCP
Full Text: DOI

References:

[1] Kalnay, E., Atmospheric Modeling, Data Assimilation, and Predictability (2002), Cambridge University Press
[2] (Chassignet, E.; Verron, J., Ocean Weather Forecasting (2006), Springer)
[3] Majda, A.; Harlim, J., Filtering Complex Turbulent Systems (2012), Cambridge University Press · Zbl 1250.93002
[4] Majda, A.; Gershgorin, B., Quantifying uncertainty in climate change science through empirical information theory, Proc. Natl. Acad. Sci. USA, 107, 14958-14963 (2010)
[5] Majda, A.; Branicki, M., Lessons in uncertainty quantification for turbulent dynamical systems, Discrete Contin. Dyn. Syst., 32, 3133-3231 (2012) · Zbl 1264.94076
[6] Mitchell, H.; Houtekamer, P., An adaptive ensemble Kalman filter, Mon. Weather Rev., 128, 416-433 (2000)
[7] Anderson, J.; Anderson, S., A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741-2758 (1999)
[8] Lorenc, A., Analysis-methods for numerical weather prediction, Q. J. R. Meteorol. Soc., 112, 1177-1194 (1986)
[9] Cohn, S., An introduction to estimation theory, 2nd WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography. 2nd WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography, Tokyo, Japan, March 13-17, 1995. 2nd WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography. 2nd WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography, Tokyo, Japan, March 13-17, 1995, J. Meteorol. Soc. Jpn., 75, 257-288 (1997)
[11] Jazwinski, A. H., Stochastic Processes and Filtering Theory (1970), Academic Press · Zbl 0203.50101
[12] Janjić, T.; Cohn, S. E., Treatment of observation error due to unresolved scales in atmospheric data assimilation, Mon. Weather Rev., 134 (2006)
[13] Dee, D. P.; da Silva, A. M., Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology, Mon. Weather Rev., 127, 1822-1834 (1999)
[14] Oke, P. R.; Sakov, P., Representation error of oceanic observations for data assimilation, J. Atmos. Ocean. Technol., 25 (2008)
[15] Grooms, I.; Majda, A. J., Efficient stochastic superparameterization for geophysical turbulence, Proc. Natl. Acad. Sci. USA, 110, 4464-4469 (2013) · Zbl 1292.76038
[16] Grooms, I.; Majda, A. J., Stochastic superparameterization in quasigeostrophic turbulence, J. Comput. Phys., 271, 78-98 (2014) · Zbl 1349.76107
[17] Majda, A. J.; Grooms, I., New perspectives on superparameterization for geophysical turbulence, J. Comput. Phys., 271, 60-77 (2014) · Zbl 1349.86035
[18] Grooms, I.; Majda, A. J., Stochastic superparameterization in a one-dimensional model for turbulence, Commun. Math. Sci., 12 (2014) · Zbl 1431.76060
[19] Harlim, J.; Majda, A. J., Mathematical strategies for filtering complex systems: Regularly spaced sparse observations, J. Comput. Phys., 227, 5304-5341 (2008) · Zbl 1388.76204
[20] Keating, S.; Majda, A.; Smith, K., New methods for estimating ocean eddy heat transport using satellite altimetry, Mon. Weather Rev., 140, 1703-1722 (2012)
[21] Branicki, M.; Majda, A., Dynamic stochastic superresolution of sparsely observed turbulent systems, J. Comput. Phys., 241, 333-363 (2013) · Zbl 1349.76761
[22] Harlim, J.; Majda, A. J., Test models for filtering with superparameterization, Multiscale Model. Simul., 11, 282-308 (2013) · Zbl 1266.93150
[23] Majda, A.; McLaughlin, D.; Tabak, E., A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 7, 9-44 (1997) · Zbl 0882.76035
[24] Cai, D.; Majda, A. J.; McLaughlin, D. W.; Tabak, E. G., Dispersive wave turbulence in one dimension, Physica D, 152-153, 551-572 (2001) · Zbl 1049.76035
[25] Wikle, C. K.; Berliner, L. M., A Bayesian tutorial for data assimilation, Physica D, 230, 1-16 (2007) · Zbl 1113.62032
[26] Houtekamer, P.; Mitchell, H.; Pellerin, G.; Buehner, M.; Charron, M.; Spacek, L.; Hansen, M., Atmospheric data assimilation with an ensemble Kalman filter: results with real observations, Mon. Weather Rev., 133, 604-620 (2005)
[27] Hamill, T.; Whitaker, J., Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approaches, Mon. Weather Rev., 133, 3132-3147 (2005)
[28] Whitaker, J. S.; Hamill, T. M., Evaluating methods to account for system errors in ensemble data assimilation, Mon. Weather Rev., 140, 3078-3089 (2012)
[29] Hamill, T.; Snyder, C., A hybrid ensemble Kalman filter-3D variational analysis scheme, Mon. Weather Rev., 128, 2905-2919 (2000)
[30] Wang, X.; Hamill, T. A.; Whitaker, J. S.; Bishop, C. H., A comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes, Mon. Weather Rev., 135, 1055-1076 (2007)
[31] Wang, X.; Hamill, T. M.; Whitaker, J. S.; Bishop, C. H., A comparison of the hybrid and EnSRF analysis schemes in the presence of model errors due to unresolved scales, Mon. Weather Rev., 137, 3219-3232 (2009)
[32] Rainwater, S.; Hunt, B., Mixed-resolution ensemble data assimilation, Mon. Weather Rev., 141, 3007-3021 (2013)
[33] Gao, J.; Xue, M., An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data, Mon. Weather Rev., 136, 945-963 (2008)
[34] Houtekamer, P.; Mitchell, H., Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev., 126, 796-811 (1998)
[35] Derber, J.; Rosati, A., A global oceanic data assimilation system, J. Phys. Oceanogr., 19, 1333-1347 (1989)
[36] Oke, P. R.; Brassington, G. B.; Griffin, D. A.; Schiller, A., The bluelink ocean data assimilation system (bodas), Ocean Model., 21, 46-70 (2008)
[37] Grabowski, W.; Smolarkiewicz, P., CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere, Physica D, 133, 171-178 (1999) · Zbl 1194.86006
[38] Grabowski, W., An improved framework for superparameterization, J. Atmos. Sci., 61, 1940-1952 (2004)
[39] Gaspari, G.; Cohn, S., Construction of correlation functions in two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723-757 (1999)
[40] Anderson, J., An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884-2903 (2001)
[41] Dini, D. H.; Mandic, D. P., Class of widely linear complex Kalman filters, IEEE Trans. Neural Netw., 23, 775-786 (2012)
[42] Harlim, J.; Majda, A., Catastrophic filter divergence in filtering nonlinear dissipative systems, Commun. Math. Sci., 8, 27-43 (2010) · Zbl 1190.93096
[43] Gottwald, G.; Majda, A., A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks, Nonlinear Process. Geophys., 20, 705-712 (2013)
[44] Compo, G. P.; Whitaker, J. S.; Sardeshmukh, P. D.; Matsui, N.; Allan, R. J.; Yin, X.; Gleason, B. E.; Vose, R. S.; Rutledge, G.; Bessemoulin, P.; Broennimann, S.; Brunet, M.; Crouthamel, R. I.; Grant, A. N.; Groisman, P. Y.; Jones, P. D.; Kruk, M. C.; Kruger, A. C.; Marshall, G. J.; Maugeri, M.; Mok, H. Y.; Nordli, O.; Ross, T. F.; Trigo, R. M.; Wang, X. L.; Woodruff, S. D.; Worley, S. J., The twentieth century reanalysis project, Q. J. R. Meteorol. Soc., 137, 1-28 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.