×

Fundamental solutions of the time fractional diffusion-wave and parabolic Dirac operators. (English) Zbl 1353.35008

Summary: In this paper we study the multidimensional time fractional diffusion-wave equation where the time fractional derivative is in the Caputo sense with order \(\beta \in ]0,2]\). Applying operational techniques via Fourier and Mellin transforms we obtain an integral representation of the fundamental solution (FS) of the time fractional diffusion-wave operator. Series representations of the FS are explicitly obtained for any dimension. From these we derive the FS for the time fractional parabolic Dirac operator in the form of integral and series representation. Fractional moments of arbitrary order \(\gamma > 0\) are also computed. To illustrate our results we present and discuss some plots of the FS for some particular values of the dimension and of the fractional parameter.

MSC:

35A08 Fundamental solutions to PDEs
35R11 Fractional partial differential equations
35C15 Integral representations of solutions to PDEs

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), National Bureau of Standards, Wiley-Interscience Publication, John Wiley & Sons: National Bureau of Standards, Wiley-Interscience Publication, John Wiley & Sons New York, etc. · Zbl 0543.33001
[2] Caputo, M., The Green function of the diffusion of fluids in porous media with memory, Rend. Fis. Accad. Lincei (9), 7, 243-250 (1996) · Zbl 0879.76098
[3] Cerejeiras, P.; Kähler, U.; Rodrigues, M. M.; Vieira, N., Hodge decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case, Commun. Pure Appl. Anal., 13, 6, 2253-2272 (2014) · Zbl 1335.30016
[4] Cerejeiras, P.; Kähler, U.; Sommen, F., Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains, Math. Methods Appl. Sci., 28, 14, 1715-1724 (2005) · Zbl 1082.30039
[5] Delanghe, R.; Sommen, F.; Souček, V., Clifford Algebras and Spinor-Valued Functions. A Function Theory for the Dirac Operator, Mathematics and Its Applications, vol. 53 (1992), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, etc. · Zbl 0747.53001
[6] Ferreira, M.; Vieira, N., Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann-Liouville case, Complex Anal. Oper. Theory, 10, 5, 1081-1100 (2016) · Zbl 1342.35434
[7] Fujita, Y., Integrodifferential equations which interpolate the heat equation and the wave equation, Osaka J. Math., 27, 2, 309-321 (1990) · Zbl 0790.45009
[8] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S., Mittag-Leffler Functions. Theory and Applications, Springer Monographs in Mathematics (2014), Springer: Springer Berlin · Zbl 1309.33001
[9] Gorenflo, R.; Luchko, Y.; Mainardi, F., Analytical properties and applications of the Wright function, Fract. Calc. Appl. Anal., 2, 4, 383-414 (1999) · Zbl 1027.33006
[10] Gürlebeck, K.; Sprößig, W., Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice (1997), Wiley: Wiley Chichester · Zbl 0897.30023
[11] Hanyga, A., Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 458, 2020, 933-957 (2002) · Zbl 1153.35347
[12] Hanyga, A., Multi-dimensional solutions of space-time-fractional diffusion equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 458, 2018, 429-450 (2002) · Zbl 0999.60035
[13] Jonsson, T.; Yngvason, J., Waves and Distributions (1995), World Scientific: World Scientific Singapore · Zbl 0918.35002
[14] Kähler, U.; Vieira, N., Fractional Clifford analysis, (Bernstein, S.; Kähler, U.; Sabadini, I.; Sommen, F., Hypercomplex Analysis: New Perspectives and Applications. Hypercomplex Analysis: New Perspectives and Applications, Trends in Mathematics (2014), Birkhäuser: Birkhäuser Basel), 191-201 · Zbl 1314.30104
[15] Kilbas, A.; Saigo, M., H-transforms. Theory and Applications, Analytical Methods and Special Functions, vol. 9 (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1056.44001
[16] Kilbas, A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[17] Kraußhar, R.; Rodrigues, M. M.; Vieira, N., Time-dependent operators on some non-orientable projective orbifolds, Math. Methods Appl. Sci., 38, 18, 5305-5319 (2015) · Zbl 1338.30045
[18] Luchko, Y., Operational method in fractional calculus, Fract. Calc. Appl. Anal., 2, 4, 463-489 (1999) · Zbl 1030.26009
[19] Luchko, Y., Algorithms for evaluation of the Wright function for the real argument’s values, Fract. Calc. Appl. Anal., 11, 1, 57-75 (2008) · Zbl 1145.33005
[20] Luchko, Y., Fractional wave equation and damped waves, J. Math. Phys., 54, 3, Article 031505 pp. (2013) · Zbl 1302.35408
[21] Luchko, Y., Multi-dimensional fractional wave equation and some properties of its fundamental solution, Commun. Appl. Ind. Math., 6, 1, Article 485 pp. (2014) · Zbl 1329.35335
[22] Luchko, Y.; Punzi, A., Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, GEM Int. J. Geomath., 1, 2, 257-276 (2011) · Zbl 1301.34104
[23] Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9, 6, 23-28 (1996) · Zbl 0879.35036
[24] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models (2010), World Scientific: World Scientific Hackensack, NJ · Zbl 1210.26004
[25] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4, 2, 153-192 (2001) · Zbl 1054.35156
[26] Mainardi, F.; Pagnini, G., The Wright functions as solutions of the time-fractional diffusion equation, Appl. Math. Comput., 141, 1, 51-62 (2003) · Zbl 1053.35008
[27] Mainardi, F.; Pagnini, G., The role of the Fox-Wright functions in fractional sub-diffusion of distributed order, J. Comput. Appl. Math., 207, 2, 245-257 (2007) · Zbl 1120.35002
[28] Prudnikov, A. P.; Brychkov, Yu. A.; Marichev, O. I., Integrals and Series. Vol. 3: More Special Functions (1990), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York, transl. from the Russian by G.G. Gould · Zbl 0967.00503
[29] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach New York, NY · Zbl 0818.26003
[30] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations, J. Math. Phys., 30, 1, 134-144 (1989) · Zbl 0692.45004
[31] Srivastava, H. M.; Manocha, H. L., A Treatise on Generating Functions, Ellis Horwood Series in Mathematics and Its Applications (1984), Halsted Press (division of John Wiley & Sons), Ellis Horwood Limited: Halsted Press (division of John Wiley & Sons), Ellis Horwood Limited Chichester, New York, etc. · Zbl 0535.33001
[32] Vieira, N., Theory of the Parabolic Dirac Operators and Its Applications to Non-Linear Differential Equations (2009), University of Aveiro: University of Aveiro Portugal, PhD thesis
[33] Vieira, N., Fischer decomposition and Cauchy-Kovalevskaya extension in fractional Clifford analysis: the Riemann-Liouville case, Proc. Edinb. Math. Soc. (2) (2016), in press · Zbl 1364.30059
[34] Wyss, W., The fractional diffusion equation, J. Math. Phys., 27, 11, 2782-2785 (1986) · Zbl 0632.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.