×

A novel semisupervised support vector machine classifier based on active learning and context information. (English) Zbl 1441.94058

Summary: This paper proposes a novel semisupervised support vector machine classifier \((\mathrm{S}^{3}\mathrm{VM})\) based on active learning (AL) and context information to solve the problem where the number of labeled samples is insufficient. Firstly, a new semisupervised learning method is designed using AL to select unlabeled samples as the semilabled samples, then the context information is exploited to further expand the selected samples and relabel them, along with the labeled samples train \(\mathrm{S}^{3}\mathrm{VM}\) classifier. Next, a new query function is designed to enhance the reliability of the classification results by using the Euclidean distance between the samples. Finally, in order to enhance the robustness of the proposed algorithm, a fusion method is designed. Several experiments on change detection are performed by considering some real remote sensing images. The results show that the proposed algorithm in comparison with other algorithms can significantly improve the detection accuracy and achieve a fast convergence in addition to verify the effectiveness of the fusion method developed in this paper.

MSC:

94A15 Information theory (general)
94C30 Applications of design theory to circuits and networks
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Anand, S., Mittal, S., Tuzel, O., & Meer, P. (2014). Semi-supervised kernel mean shift clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6), 1201-1215. doi:10.1109/TPAMI.2013.190. · doi:10.1109/TPAMI.2013.190
[2] Bazi, Y., Melgani, F., & Al-Sharari, H. D. (2010). Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 3178-3187. · doi:10.1109/TGRS.2010.2045506
[3] Bovolo, F., Bruzzone, L., & Marconcini, M. (2008). A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Transactions on Geoscience and Remote Sensing, 46(7), 2070-2082. doi:10.1109/TGRS.2008.916643. · doi:10.1109/TGRS.2008.916643
[4] Bruzzone, L., & Persello, C. (2009). A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2142-2154. doi:10.1109/TGRS.2008.2011983. · doi:10.1109/TGRS.2008.2011983
[5] Celik, T. (2010). Change detection in satellite images using a genetic algorithm approach. IEEE Geoscience and Remote Sensing Letters, 7(2), 386-390. doi:10.1109/LGRS.2009.2037024. · doi:10.1109/LGRS.2009.2037024
[6] Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-Supervised Learning. Cambridge, MA: MIT Press.
[7] D’Elia, C., Ruscino, S., Abbate, M., Aiazzi, B., Baronti, S., & Alparone, L. (2014). SAR image classification through information-theoretic textural features, MRF segmentation, and object-oriented learning vector quantization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(4), 1116-1126. doi:10.1109/JSTARS.2014.2304700. · doi:10.1109/JSTARS.2014.2304700
[8] Demir, B., Persello, C., & Bruzzone, L. (2011). Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49(3), 1014-1031. doi:10.1109/TGRS.2010.2072929. · doi:10.1109/TGRS.2010.2072929
[9] Didaci, L.; Fumera, G.; Roli, F.; Gimel’farb, G. (ed.); Hancock, E. (ed.); Imiya, A. (ed.); Kuijper, A. (ed.); Kudo, M. (ed.); Omachi, S. (ed.); etal., Analysis of co-training algorithm with very small training sets, No. 7626, 719-726 (2012), Berlin, Heidelberg · doi:10.1007/978-3-642-34166-3_79
[10] Espinola, M., Piedra-Fernandez, J. A., Ayala, R., Iribarne, L., & Wang, J. Z. (2015). Contextual and hierarchical classification of satellite images based on cellular automata. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 795-809. doi:10.1109/TGRS.2014.2328634. · doi:10.1109/TGRS.2014.2328634
[11] Geiß, C., & Taubenböck, H. (2013). Remote sensing contributing to assess earthquake risk: From a literature review towards a roadmap. Natural Hazards, 68(1), 7-48. doi:10.1007/s11069-012-0322-2. · doi:10.1007/s11069-012-0322-2
[12] Gomez-Chova, L., Bruzzone, L., Camps-Valls, G., & Calpe-Maravilla, J. (2008). Semi-supervised remote sensing image classification based on clustering and the mean map Kernel. In Geoscience and remote sensing symposium, 2008. IGARSS 2008. IEEE International, 7-11 July 2008, Vol. 4, (pp. IV-391-IV-394). doi10.1109/IGARSS.2008.4779740.
[13] Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4238-4249. doi:10.1109/TGRS.2015.2393857. · doi:10.1109/TGRS.2015.2393857
[14] Habib, T., Inglada, J., Mercier, G., & Chanussot, J. (2009). Support vector reduction in SVM algorithm for abrupt change detection in remote sensing. IEEE Geoscience and Remote Sensing Letters, 6(3), 606-610. doi:10.1109/LGRS.2009.2020306. · doi:10.1109/LGRS.2009.2020306
[15] Hansen, M. C., & Loveland, T. R. (2012). A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122, 66-74. doi:10.1016/j.rse.2011.08.024. · doi:10.1016/j.rse.2011.08.024
[16] Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their Applications, 13(4), 18-28. doi:10.1109/5254.708428. · doi:10.1109/5254.708428
[17] Izquierdo-Verdiguier, E., Laparra, V., Gomez-Chova, L., & Camps-Valls, G. (2013). Encoding invariances in remote sensing image classification with SVM. IEEE Geoscience and Remote Sensing Letters, 10(5), 981-985. doi:10.1109/LGRS.2012.2227297. · doi:10.1109/LGRS.2012.2227297
[18] Han, J., Zhang, D., Gong, C., Lei, G., & Jinchang, R. (2015a). Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325-3337. doi:10.1109/TGRS.2014.2374218. · doi:10.1109/TGRS.2014.2374218
[19] Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., & Wu, F. (2015b). Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 1309-1321. doi:10.1109/TCSVT.2014.2381471. · doi:10.1109/TCSVT.2014.2381471
[20] Kawakita, M., & Kanamori, T. (2013). Semi-supervised learning with density-ratio estimation. Machine Learning, 91(2), 189-209. doi:10.1007/s10994-013-5329-8. · Zbl 1273.68300 · doi:10.1007/s10994-013-5329-8
[21] Li, J., Bioucas-Dias, J. M., & Plaza, A. (2010). Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4085-4098. doi:10.1109/TGRS.2010.2060550. · doi:10.1109/TGRS.2010.2060550
[22] Maulik, U., & Chakraborty, D. (2012). A novel semisupervised SVM for pixel classification of remote sensing imagery. International Journal of Machine Learning and Cybernetics, 3(3), 247-258. doi:10.1007/s13042-011-0059-3. · doi:10.1007/s13042-011-0059-3
[23] Maulik, U., & Chakraborty, D. (2014). Fuzzy preference based feature selection and semisupervised SVM for cancer classification. IEEE Transactions on NanoBioscience, 13(2), 152-160. doi:10.1109/TNB.2014.2312132. · doi:10.1109/TNB.2014.2312132
[24] Munoz-Mari, J., Tuia, D., & Camps-Valls, G. (2012). Semisupervised classification of remote sensing images with active queries. IEEE Transactions on Geoscience and Remote Sensing, 50(10), 3751-3763. doi:10.1109/TGRS.2012.2185504. · doi:10.1109/TGRS.2012.2185504
[25] Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., & Emery, W. J. (2014). SVM active learning approach for image classification using spatial information. IEEE Transactions on Geoscience and Remote Sensing, 52(4), 2217-2233. doi:10.1109/TGRS.2013.2258676. · doi:10.1109/TGRS.2013.2258676
[26] Persello, C., & Bruzzone, L. (2014). Active and semisupervised learning for the classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 6937-6956. doi:10.1109/TGRS.2014.2305805. · doi:10.1109/TGRS.2014.2305805
[27] Schohn, G., & Cohn, D. (2000). Less is more: Active learning with support vector machines. In Proc. 17th International Conf. on Machine Learning (pp. 839-846). San Francisco, CA: Morgan Kaufmann.
[28] Scholkopf, B., Kah-Kay, S., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T., et al. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11), 2758-2765. doi:10.1109/78.650102. · doi:10.1109/78.650102
[29] Shahshahani, B. M., & Landgrebe, D. A. (1994). The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5), 1087-1095. doi:10.1109/36.312897. · doi:10.1109/36.312897
[30] Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Munoz-Mari, J. (2011). A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics in Signal Processing, 5(3), 606-617. doi:10.1109/JSTSP.2011.2139193. · doi:10.1109/JSTSP.2011.2139193
[31] Yi, Y., Wu, J., & Xu, W. (2011). Incremental SVM based on reserved set for network intrusion detection. Expert Systems with Applications, 38(6), 7698-7707. · doi:10.1016/j.eswa.2010.12.141
[32] Zhao, C., Li, X., Ren, J., & Marshall, S. (2013). Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery. International Journal of Remote Sensing, 34(24), 8669-8684. doi:10.1080/01431161.2013.845924. · doi:10.1080/01431161.2013.845924
[33] Zhu, X.; Sammut, C. (ed.); Webb, G. (ed.), Semi-supervised learning, 892-897 (2010), Berlin, Heidelberg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.