×

Adaptive fusion of color and spatial features for noise-robust retrieval of colored logo and trademark images. (English) Zbl 1441.94031

Summary: Due to their uniqueness and high value commercially, logos/trademarks play a key role in e-business based global marketing. However, existing trademark/logo retrieval techniques and content-based image retrieval methods are mostly designed for generic images, which cannot provide effective retrieval of trademarks/logos. Although color and spatial features have been intensively investigated for logo image retrieval, in most cases they were applied separately. When these are combined in a fused manner, a fixed weighting is normally used between them which cannot reflect the significance of these features in the images. When the image quality is degraded by various reasons such as noise, the reliability of color and spatial features may change in different ways, such that the weights between them should be adapted to such changes. In this paper, adaptive fusion of color and spatial descriptors is proposed for colored logo/trademark image retrieval. First, color quantization and k-means are combined for effective dominant color extraction. For each extracted dominant color, a component-based spatial descriptor is derived for local features. By analyzing the image histogram, an adaptive fusion of these two features is achieved for more effective logo abstraction and more accurate image retrieval. The proposed approach has been tested on a database containing over 2300 logo/trademark images. Experimental results have shown that the proposed methodology yields improved retrieval precision and outperforms three state-of-the-art techniques even with added Gaussian, salt and pepper, and speckle noise.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] Amanatiadis, A., Kaburlasos, V. G., Gasteratos, A., & Papadakis, S. E. (2011). Evaluation of shape descriptors for shape-based image retrieval. IET Image Processing, 5(5), 493. doi:10.1049/iet-ipr.2009.0246. · doi:10.1049/iet-ipr.2009.0246
[2] Anuar, F. M., Setchi, R., & Lai, Y.-K. (2013). Trademark image retrieval using an integrated shape descriptor. Expert Systems with Applications, 40(1), 105-121. doi:10.1016/j.eswa.2012.07.031. · doi:10.1016/j.eswa.2012.07.031
[3] Calitz, M. F., & Rüther, H. (1996). Least absolute deviation (LAD) image matching. ISPRS Journal of Photogrammetry and Remote Sensing, 51(5), 223-229. · doi:10.1016/0924-2716(95)00010-0
[4] Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 40(2), 1-60. doi:10.1145/1348246.1348248. · doi:10.1145/1348246.1348248
[5] ElAlami, M. E. (2011). Unsupervised image retrieval framework based on rule base system. Expert Systems with Applications, 38(4), 3539-3549. doi:10.1016/j.eswa.2010.08.142. · doi:10.1016/j.eswa.2010.08.142
[6] Feng, Y., Ren, J., & Jiang, J. (2011). Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications. IEEE Transactions on Broadcasting, 57(2), 500. doi:10.1109/TBC.2011.2131030. · doi:10.1109/TBC.2011.2131030
[7] Han, J., Zhang, D., Cheng, G., Guo, L., & Ren, J. (2014). Obvject detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325-3337.
[8] Han, J., He, S., Qian, X., Wang, D., Guo, L., & Liu, T. (2013). An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Transactions on Circuits and Systems on Video Technology, 23(2), 2009-2021. · doi:10.1109/TCSVT.2013.2242594
[9] Huang, Z. (2010). Contnt-based image retrieval using color moment and gabor texture feature. In Paper presented at the Machine Learning and Cybernetics, Qingdao.
[10] Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. doi:10.1016/j.patrec.2009.09.011. · doi:10.1016/j.patrec.2009.09.011
[11] Jain, A. K., & Vailaya, A. (1998). A case study with trademark image database. Pattern Recognition, 31, 1369-1390. · doi:10.1016/S0031-3203(97)00131-3
[12] Jeong, S., Won, C. S., & Gray, R. M. (2004). Image retrieval using color histograms generated by Gauss mixture vector quantization. Computer Vision and Image Understanding, 94(1-3), 44-66. doi:10.1016/j.cviu.2003.10.015. · doi:10.1016/j.cviu.2003.10.015
[13] Kankanhalli, M. S., Mehtre, B. M., & Huang, H. Y. (1999). Color and spatial feature for content-based image retrieval. Pattern Recognition Letters, 20(1), 109-118. doi:10.1016/S0167-8655(98)00100-7. · Zbl 0921.68025 · doi:10.1016/S0167-8655(98)00100-7
[14] Kim, Y. S., & Kim, W. Y. (1998). Content-based trademark retrieval system using a visually salient feature. Image and Vision Computing, 16(12-13), 931-939. · doi:10.1016/S0262-8856(98)00060-2
[15] Lin, C.-H., Chen, R.-T., & Chan, Y.-K. (2009). A smart content-based image retrieval system based on color and texture feature. Image and Vision Computing, 27(6), 658-665. doi:10.1016/j.imavis.2008.07.004. · doi:10.1016/j.imavis.2008.07.004
[16] Ling, H., Yang, X., & Latecki, L. J. (2010). Balancing deformability and discriminability for shape matching. In Paper presented at the proceedings of the 11th European conference on computer vision conference on Computer vision: Part III, Heraklion, Crete, Greece.
[17] Liu, G.-H., & Yang, J.-Y. (2013). Content-based image retrieval using color difference histogram. Pattern Recognition, 46(1), 188-198. doi:10.1016/j.patcog.2012.06.001. · doi:10.1016/j.patcog.2012.06.001
[18] Liu, X., & Zhang, B. (2013). Automatic collecting representative logo images from the internet. Tsinghua Science and Technology, 18(6), 606-617. doi:10.1109/TST.2013.6678906. · doi:10.1109/TST.2013.6678906
[19] Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Image Processing Information Theory, 28(2), 129-137. · Zbl 0504.94015 · doi:10.1109/TIT.1982.1056489
[20] Lu, T.-C., & Chang, C.-C. (2007). Color image retrieval technique based on color features and image bitmap. Information Processing & Management, 43(2), 461-472. doi:10.1016/j.ipm.2006.07.014. · doi:10.1016/j.ipm.2006.07.014
[21] Maheshwary, P., & Srivastav, N. (2008). Retrieving similar image using color moment feature detector and k-means clustering of remote sensing images. In IEEE International Conference on Computer and Electrical Engineering (ICCEE, 2008) (pp. 821-824), Phuket: IEEE.
[22] Min, R., & Cheng, H. D. (2009). Effective image retrieval using dominant color descriptor and fuzzy support vector machine. Pattern Recognition, 42(1), 147-157. doi:10.1016/j.patcog.2008.07.001. · Zbl 1173.68497 · doi:10.1016/j.patcog.2008.07.001
[23] Mojsilovic, A., Hu, J., & Soljanin, E. (2002). Extraction of perceptually important colors and similarity measurement for image matching retrieval and analysis. IEEE Transactions On Image Processing, 11(11), 1238-1248. · doi:10.1109/TIP.2002.804260
[24] Park, J., An, Y., Jeong, I., & Kang, J. (2007). Image indexing using spatial multi-resolution color correlogram. In Paper presented at the IEEE international workshop on imaging systems and techniques, Krakow.
[25] Qi, H., Li, K., Shen, Y., & Qu, W. (2010). An effective solution for trademark image retrieval by combining shape description and feature matching. Pattern Recognition, 43(6), 2017-2027. doi:10.1016/j.patcog.2010.01.007. · Zbl 1192.68232 · doi:10.1016/j.patcog.2010.01.007
[26] Salembier, P., & Sikora, T. (2002). Introduction to MPEG-7: Multimedia content description interface. Chichester: Wiley.
[27] Shao, H., Wu, Y., Cui, W., & Zhang, J. (2008). Image retrieval based on MPEG-7 dominant color descriptor. In Paper presented at the Young Computer Scientists, Hunan.
[28] Talib, A., Mahmuddin, M., Husni, H., & George, L. E. (2013). A weighted dominant color descriptor for content-based image retrieval. Journal of Visual Communication and Image Representation, 24(3), 345-360. doi:10.1016/j.jvcir.2013.01.007. · doi:10.1016/j.jvcir.2013.01.007
[29] Thomas, M., & Kenneth, N. (1993). Least squares and least absolute deviation procedures in approximately linear models. Statistics & Probability Letters, 16(2), 153-158. · Zbl 0850.62587 · doi:10.1016/0167-7152(93)90160-K
[30] Thurdsak, L., Kiyoaki, A., & Shozo, K. (2007). A new content-based image retrieval using color correlogram and inner product metric. In Paper presented at the eighth international workshop on image analysis for multimedia interactive service, Santorini. · Zbl 1173.68497
[31] Wang, X.-Y., Yu, Y.-J., & Yang, H.-Y. (2011). An effective image retrieval scheme using color, texture and shape features. Computer Standards & Interfaces, 33(1), 59-68. doi:10.1016/j.csi.2010.03.004. · doi:10.1016/j.csi.2010.03.004
[32] Wei, C.-H., Li, Y., Chau, W.-Y., & Li, C.-T. (2009). Trademark image retrieval using synthetic features for describing global shape and interior structure. Pattern Recognition, 42(3), 386-394. doi:10.1016/j.patcog.2008.08.019. · Zbl 1181.68259 · doi:10.1016/j.patcog.2008.08.019
[33] Yan, Y., Ren, J., Li, Y., Windmill, J., & Ijomah, W. (2015). Fusion of dominant colour and spatial layout features for effective image retrieval of coloured logos and trademarks. In Paper presented at the 1st IEEE international conference on multimedia big data, Beijing.
[34] Yang, N.-C., Chang, W.-H., Kuo, C.-M., & Li, T.-H. (2008). A fast MPEG-7 dominant color extraction with new similarity measure for image retrieval. Journal of Visual Communication and Image Representation, 19(2), 92-105. doi:10.1016/j.jvcir.2007.05.003. · doi:10.1016/j.jvcir.2007.05.003
[35] Zhang, D., & Lu, G. (2002). A comparative study of three region shape descriptors. In Paper presented at the digital image computing techniques and applications, Melbourne, Australia.
[36] Zhang, D., & Lu, G. (2002a). Content-based shape retrieval using different shape descriptors: A comparative study. In Paper presented at the Digital Image Computing Techniques and Applications, Melbourne, Australia.
[37] Zhang, D., & Lu, G. (2002b). Shape-based image retrieval using generic Fourier descriptor. Signal Processing: Image Communication, 17, 825-848.
[38] Zhang, D., & Lu, G. (2003). A comparative study of curvature scale space and Fourier descriptors for shape-based image retrieval. Journal of Visual Communication and Image Representation, 14(1), 39-57. doi:10.1016/s1047-3203(03)00003-8. · doi:10.1016/s1047-3203(03)00003-8
[39] Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1-19. doi:10.1016/j.patcog.2003.07.008. · doi:10.1016/j.patcog.2003.07.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.