×

Numerical solution of seismic exploration problems in the arctic region by applying the grid-characteristic method. (English. Russian original) Zbl 1381.86024

Comput. Math. Math. Phys. 56, No. 6, 1128-1141 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 6, 1149-1163 (2016).
Summary: The goal of this paper is the numerical solution of direct problems concerning hydrocarbon seismic exploration on the Arctic shelf. The task is addressed by solving a complete system of linear elasticity equations and a system of acoustic field equations. Both systems are solved by applying the grid-characteristic method, which takes into account all wave processes in a detailed and physically correct manner and produces a solution near the boundaries and interfaces of the integration domain, including the interface between the acoustic and linear elastic media involved. The seismograms and wave patterns obtained by numerically solving these systems are compared. The effect of ice structures on the resulting wave patterns is examined.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
86-08 Computational methods for problems pertaining to geophysics
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] W. Goodway and M. Enachescu, “Introduction to this special section: Arctic/ATC,” The Leading Edge 32 (5), 522-523 (2013). · doi:10.1190/tle32050522.1
[2] A. B. Baggeroer and G. L. Duckworth, “Seismic exploration in the Arctic Ocean,” The Leading Edge 2 (10), 22-27 (1983). · doi:10.1190/1.1438794
[3] Henley, D. C., Attenuating the ice flexural wave on arctic seismic data, 2757-2761 (2006)
[4] R. Trupp, J. Hastings, S. Cheadle, and R. Vesely, “Seismic in arctic environs: Meeting the challenge,” The Leading Edge 28 (8), 936-942 (2009). · doi:10.1190/1.3192840
[5] D. C. Mosher, C. B. Chapman, J. Shimeld, H. R. Jackson, D. Chian, J. Verhoef, D. Hutchinson, N. Lebedeva-Ivanova, and R. Pederson, “High arctic marine geophysical data acquisition,” The Leading Edge 32 (5), 524-536 (2013). · doi:10.1190/tle32050524.1
[6] S. L. Rice, T. Dudley, C. Schneider, R. J. Pierce, B. Horn, S. Cameron, R. Bloor, and Z.-Z. J. Zhou, “Arctic seismic acquisition and processing,” The Leading Edge 32 (5), 546-554 (2013). · doi:10.1190/tle32050546.1
[7] B. R. Julian and D. Gubbins, “Three-dimensional seismic ray tracing,” J. Geophys. 43, 95-113 (1977).
[8] A. Bermudez, L. Hervella-Nieto, and R. Rodriguez, “Finite element computation of three-dimensional elastoacoustic vibrations,” J. Sound Vibration 219 (2), 279-306 (1999). · Zbl 1235.74267 · doi:10.1006/jsvi.1998.1873
[9] M. Kazer and M. Dumbser, “A highly accurate method for complex interfaces between solids and moving fluids,” Geophysics 73 (3), 723-725 (2008).
[10] R. Van Vossen, J. O. A. Robertsson, and C. H. Chapman, “Finite-difference modeling of wave propagation in a fluid-solid configuration,” Geophysics 67 (2), 618-624 (2002). · doi:10.1190/1.1468623
[11] J. De la Puente, M. Kaser, M. Dumbser, and H. Igel, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes IV: Anisotropy,” Geophys. J. Int. 169, 1210-1228 (2007). · doi:10.1111/j.1365-246X.2007.03381.x
[12] Seriani, G.; Priolo, E.; Carcione, J. M.; Padovani, E., High-order spectral element method for elastic wave modeling, 1285-1288 (1992)
[13] A. Levander, “Fourth-order finite-difference P-SV seismograms,” Geophysics 53 (11), 1425-1436 (1988). · doi:10.1190/1.1442422
[14] S. Vlastos, E. Liu, I. G. Main, and X.-Y. Li, “Numerical simulation of wave propagation in media with discrete distributions of fractures: Effect of fracture size and spatial distributions,” Geophys. J. Int. 152 (3), 649-668 (2003). · doi:10.1046/j.1365-246X.2003.01876.x
[15] A. V. Favorskaya, I. B. Petrov, A. V. Sannikov, and I. E. Kvasov, “Grid-characteristic method using high order interpolation on tetrahedral hierarchical meshes with a multiple time step,” Math. Models Comput. Simul. 5 (5), 409-415 (2013). · Zbl 1457.86003 · doi:10.1134/S2070048213050104
[16] A. V. Favorskaya, D. I. Petrov, I. B. Petrov, and N. I. Khokhlov, “Numerical solution of arctic problems by applying the grid-characteristic method,” Izv. Yuzh. Fed. Univ. Tekh. Nauki, No. 12, 192-200 (2014). · Zbl 1381.86024
[17] V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method,” Comput. Math. Math. Phys. 53 (10), 1523-1533 (2013). · Zbl 1299.86016 · doi:10.1134/S0965542513100060
[18] K. M. Magomedov and A. S. Kholodov, Grid-Characteristic Numerical Methods (Nauka, Moscow, 1988) [in Russian]. · Zbl 0649.65051
[19] I. B. Petrov and A. S. Kholodov, “Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method,” USSR Comput. Math. Math. Phys. 24 (3), 61-73 (1984). · Zbl 0566.73068 · doi:10.1016/0041-5553(84)90044-2
[20] I. B. Petrov and A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type,” USSR Comput. Math. Math. Phys. 24 (4), 128-138 (1984). · Zbl 0577.65079 · doi:10.1016/0041-5553(84)90245-3
[21] I. B. Petrov, A. G. Tormasov, and A. S. Kholodov, “On the use of hybrid grid-characteristic schemes for the numerical solution of three-dimensional problems in the dynamics of a deformable solid,” USSR Comput. Math. Math. Phys. 30 (4), 191-196 (1990). · Zbl 0737.73095 · doi:10.1016/0041-5553(90)90062-W
[22] I. E. Kvasov and I. B. Petrov, “High-Performance computer simulation of wave processes in geological media in seismic exploration,” Comput. Math. Math. Phys. 52 (2), 302-313 (2012). · Zbl 1249.86040 · doi:10.1134/S096554251202011X
[23] W. Nowacki, Teoria Sprezystosci (Panstwowe Wydawnictwo Naukowe, Warsaw, 1970; Mir, Moscow, 1975). · Zbl 0601.73021
[24] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Butterworth-Heinemann, Oxford, 1986; Nauka, Moscow, 1987). · Zbl 0178.28704
[25] A. V. Favorskaya, I. B. Petrov, and K. A. Beklemysheva, “Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method,” Math. Models Comput. Simul. 6 (3), 294-304 (2014). · Zbl 1457.74072 · doi:10.1134/S207004821403003X
[26] V. I. Golubev, “Method for visualizing and interpreting results of full-wave seismic computations,” Tr. Mosk. Fiz.-Tekh. Inst. 6 (1), 154-161 (2014).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.