×

On the short-wave nature of Richtmyer-Meshkov instability. (English. Russian original) Zbl 1381.76315

Comput. Math. Math. Phys. 56, No. 6, 1075-1085 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 6, 1093-1103 (2016).
Summary: In the case of a variable period (wavelength) of a perturbed interface, the instability and stability of Richtmyer-Meshkov vortices in perfect gas and incompressible perfect fluid, respectively, are investigated numerically and analytically. Taking into account available experiments, the instability of the interface between the argon and xenon in the case of a relatively small period is modeled. An estimate of the magnitude of the critical period is given. The nonlinear (for arbitrary initial conditions) stability of the corresponding steady-state vortex flow of perfect fluid in a strip (vertical periodic channel) in the case of a fairly large period is shown.

MSC:

76N15 Gas dynamics (general theory)
76B47 Vortex flows for incompressible inviscid fluids
76E30 Nonlinear effects in hydrodynamic stability

Software:

MAH-3
Full Text: DOI

References:

[1] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids,” Comm. Pure Appl. Math. 13, 297-319 (1960). · doi:10.1002/cpa.3160130207
[2] E. E. Meshkov, “Instability of the interface between two gases accelerated by a shock wave,” Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, No. 5, 151-158 (1969).
[3] S. K. Godunov, “A difference method for the calculation of shock waves,” Usp. Mat. Nauk 12 (73), 176-177 (1957). · Zbl 0080.40104
[4] S. K. Godunov, “A difference scheme for numerical calculation of discontinuous solution of hydrodynamic equations,” Mat. Sb. 47 (3), 271-306 (1959). · Zbl 0171.46204
[5] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 43 (2), 357-372 (1981). · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[6] R. Abgrall, “On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation,” J. Comput. Phys. 114 (1), 45-58 (1994). · Zbl 0822.65062 · doi:10.1006/jcph.1994.1148
[7] A. N. Aleshin, E. G. Gamalii, S. G. Zaitsev, E. V. Lazareva, I. G. Lebo, V. B. Rozanov, “Investigation of the the nonlinear and transient phase of evolution of the Richtmyer-Meshkov instability,” Pis’ma Zh. Tekh. Fiz. 12, 1063-1067 (1988).
[8] I. V. Yakovlev, “Instability of the interface between colliding metals,” Combust., Explos., Shock Waves 9, 390-393 (1973). · doi:10.1007/BF00745122
[9] J. Lindl, “Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,” Phys. Plasmas 2, 3933-4024 (1995). · doi:10.1063/1.871025
[10] Jacobs, J. W.; Jones, M. A.; Niederhaus, C. E.; Young, R. (ed.); Glimm, J. (ed.); Boston, B. (ed.), Experimental studies of Richtmyer-Meshkov instability, 195-202 (1996)
[11] F. M. Abzaev, S. A. Bel’kov, A. V. Bessarab, S. V. Bondarenko, A. V. Veselov, V. A. Gaidash, G. V. Dolgoleva, N. V. Zhidkov, V. M. Izgorodin, G. A. Kirillov, G. G. Kochemasov, D. N. Litvin, E. I. Mitrofanov, V.M. Murugov, L. S. Mkhitar’yan, S. I. Petrov, A. V. Pinegin, V. T. Punin, A. V. Sennik, and N. A. Suslov, “Compression and heating of indirectly driven spherical fusion targets on the ISKRA-5 facility,” Zh. Exp. Ter. Fiz. 114 (1), 155-170 (1998).
[12] O. B. Drenov, “On the evolution of shear instability in metals,” Zh. Tech. Fiz. 69 (2), 38-43 (1999).
[13] O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment in Turbulence: From Order to Chaos (Nauka, Moscow, 2000) [in Russian]. · Zbl 0999.76004
[14] N. E. Lanier, J. Workman, R. L. Holmes, P. Graham, and A. Moore, “Highly resolved measurements of defect evolution under heated-and-shocked conditions,” Phys. Plasmas 14, 056314.1-8 (2007). · doi:10.1063/1.2720799
[15] S. I. Abarzhi, “Review of theoretical modeling approaches of Rayleigh-Taylor instabilities and turbulent mixing,” Phil. Trans. R. Soc. A. 368, 1809-1828 (2010). · Zbl 1192.76003 · doi:10.1098/rsta.2010.0020
[16] A. L. Mikhailov, N. V. Nevmerzhitskii, and V. A. Raevskii, “Hydrodynamic instabilities,” Usp. Fiz. Nauk, 181 (4), 410-416 (2011). · doi:10.3367/UFNr.0181.201104i.0410
[17] S. Balasubramanian, G. C. Orliez, and K. P. Prestridge, “Experimental study of initial condition dependence on turbulent mixing in shock-accelerated Richtmyer-Meshkov fluid layers,” J. Turbulence 14 (3), 170-196 (2013). · doi:10.1080/14685248.2013.792932
[18] E. S. Oran and V. N. Gamezo, “Origins of the deflagration-to-detonation transition in gas-phase combustion,” Combust. Flame 148, 4-47 (2007). · doi:10.1016/j.combustflame.2006.07.010
[19] C. C. Lin, The Theory of Hydrodynamic Stability (Cambridge Univ. Press, Cambridge, 1955). · Zbl 0068.39202
[20] A. S. Monin, “Hydrodynamic instability,” Usp. Fiz. Nauk 150 (1), 61-105 (1986). · doi:10.3367/UFNr.0150.198609b.0061
[21] O. V. Troshkin. “Algebraic structure of two-dimensional steady-state Navier-Stokes equations and global uniqueness theorems,” Sov. Phys. Dokl. 33, 112-116 (1988). · Zbl 0659.76036
[22] E. I. Oparina and O. V. Troshkin, “Stability of Kolmogorov flow in a channel with rigid walls,” Dokl. Phys. 49, 583-587 (2004). · doi:10.1134/1.1815419
[23] O. V. Troshkin, “A dissipative top in a weakly compact Lie algebra and stability of basic flows in a plane channel,” Dokl. Phys. 57, 36-41 (2012). · doi:10.1134/S1028335812010090
[24] O. V. Troshkin, “Nonlinear stability of Couette, Poiseuille, and Kolmogorov plane channel flows,” Dokl. Phys. 85, 181-185 (2012). · Zbl 1257.35175
[25] O. V. Troshkin, “Nonlinear stability of a parabolic velocity profile in a plane periodic channel,” Comput. Math. Math. Phys. 2013. V. 53. Issue 11. P. 1729-1747. · Zbl 1313.76045 · doi:10.1134/S0965542513110110
[26] O. M. Belotserkovskii, V. V. Demchenko, and A. M. Oparin, “Gradual onset of turbulence in the Richtmyer-Meshkov instability,” Dokl. Ross. Akad. Nauk 334, 581-583 (1994).
[27] I. G. Lebo, V. V. Nikishin, V. B. Rozanov, and V. F. Tishkin, “On the effect of boundary conditions on the instability growth at a constant surface in passage of a shock wave,” Bull. Lebedev Phys. Inst., No. 1, 40-47 (1997).
[28] J. Glimm, M. J. Graham, J. Grove, X. L. Li, T. M. Smith, D. Tan, F. Tangerman, and Q. Zhang, “Front tracking in two and three dimensions,” Comput. Math. Appl. 35, 1-11 (1998). · Zbl 1010.68538 · doi:10.1016/S0898-1221(98)00028-5
[29] N. A. Inogamov and A. M. Oparin, “Evolution of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the three-dimensional space: The topology of vortex surfaces,” Pis’ma Zh. Eksp. Teor. Fiz. 69, 691-697 (1999).
[30] A. A. Charakhch’yan, “The Richtmyer-Meshkov instability of the interface boundary crossed by two consequitive shock waves,” Prikl. Mekh. Tekh. Fiz. 41 (1), 28-37 (2000). · Zbl 0999.76070
[31] V. Rozanov, R. Stepanov, A. Nuzhnyi, R. Yakhin, M. Anuchin, N. Proncheva, N. Zmitrenko, Yu. Yanilkin, and V. Tishkin, The Growth Rate of The Mixing Zone in Direct Numerical Simulation and the Wavelet Analysis of the Evolution of Multimode Rayleigh-Taylor Instability (Phys. Inst, Ross. Akad. Nauk, Moscow, 2004) [in Russian].
[32] N. N. Anuchina, V. I. Volkov, and V. A. Gordeychuk, N. S. Es’kov, O. S. Ilyutina, and O. M. Kozyrev, “Numerical simulations of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAH-3 code,” J. Comp. Appl. Math. 168, 11-20 (2004). · Zbl 1107.76325 · doi:10.1016/j.cam.2003.06.008
[33] G. A. Ruev, A. V. Fedorov, and V. M. Fomin, “Evolution of the Richtmyer-Meshkov instability under the interaction of a diffusive layer of two gases with shock waves,” Prikl. Mekh. Tekh. Fiz. 46, (3), 3-11 (2005). · Zbl 1083.76027
[34] R. V. Zhalnin, N. V. Zmitrenko, M. E. Ladonkina, and V. F. Tishkin, “Numerical simulation of the Richtmyer-Meshkov instability using high-order schemes,” Mat. Model. 19 (10), 61-66 (2007). · Zbl 1140.76344
[35] K. Nishihara, J. G. Wouchuk, C. Matsuoka, R. Ishizaki, and V. V. Zhakhovsky, “Richtmyer-Meshkov instability: Theory of linear and nonlinear evolution,” Phil. Trans. R. Soc. A. 368, 1769-1807 (2010). · Zbl 1192.76018 · doi:10.1098/rsta.2009.0252
[36] M. Hahn, D. Drikakis, D. L. Youngs, and R. J. R. Williams, “Richtmyer-Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshocked flow,” Phys. Fluids 23, 046101-01-046101-11 (2011). · doi:10.1063/1.3576187
[37] B. P. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations with Applications in Fluid Dynamics (Nauka, Moscow, 1978) [in Russian]. · Zbl 0177.14001
[38] V. I. Yudovich, “Two-dimensional nonstationary problem of ideal fluid leakoff through a given domain,” Mat. Sb. 64, 562-588 (1964).
[39] O. V. Troshkin, “On the theory of periodic layers in incompressible fluid,” Comput. Math. Math. Phys. 47, 707-713 (2007). · Zbl 1210.76087 · doi:10.1134/S0965542507040136
[40] O. V. Troshkin, “Transport” form of the equations for a periodic incompressible layer,“ Dokl. Math. <Emphasis Type=”Bold”>77, 310-314 (2008). · Zbl 1287.76102 · doi:10.1134/S1064562408020397
[41] O. V. Troshkin, “On the topological analysis of the structure of hydrodynamic flows,” Usp. Mat. Nauk 43 (262), 129-158 (1988). · Zbl 0685.76001
[42] O. V. Troshkin, Doctoral Dissertation in Mathematical Physics Nontraditional Methods in Mathematical Hydrodynamics (Vychisl. Tsentr. Ross. Akad. Nauk, Moscow, 1990; American Mathematical Society, Rhode Island, 1995).
[43] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics (Nauka, Moscow, 1988; American Mathematical Society, Providence, 1963). · Zbl 0662.46001
[44] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Nauka, Moscow, 1970; Gordon and Breach, New York, 1969). · Zbl 0215.29004
[45] V. I. Arnold, “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique de fluids parfaits,” Ann. Inst. Fourier 16, 319-361 (1966). · Zbl 0148.45301 · doi:10.5802/aif.233
[46] V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1989; Springer, New York, 1989). · Zbl 0692.70003 · doi:10.1007/978-1-4757-2063-1
[47] O. V. Troshkin, “On the stability of a plane flow vortex,” Dokl. Math. 90, 584-588 (2014). · Zbl 1305.76023 · doi:10.1134/S1064562414060222
[48] A. V. Bushman, I. V. Lomonosov, and V. E. Fortov, “Models of wide-range equations of states of matter under high matter density,” Preprint No. 6-287, IVT RAN (Inst. of High Temperatures, Russian Academy of Sciences, 1990).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.