×

Simulation of elastic wave propagation in geological media: intercomparison of three numerical methods. (English. Russian original) Zbl 1381.86001

Comput. Math. Math. Phys. 56, No. 6, 1086-1095 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 6, 1104-1114 (2016).
Summary: For wave propagation in heterogeneous media, we compare numerical results produced by grid-characteristic methods on structured rectangular and unstructured triangular meshes and by a discontinuous Galerkin method on unstructured triangular meshes as applied to the linear system of elasticity equations in the context of direct seismic exploration with an anticlinal trap model. It is shown that the resulting synthetic seismograms are in reasonable quantitative agreement. The grid-characteristic method on structured meshes requires more nodes for approximating curved boundaries, but it has a higher computation speed, which makes it preferable for the given class of problems.

MSC:

86-08 Computational methods for problems pertaining to geophysics
74L05 Geophysical solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
86A60 Geological problems
Full Text: DOI

References:

[1] J. M. Carcione, G. C. Herman, and A. P. E. Ten Kroode, “Seismic Modeling,” Geophysics 67 (4), 1304-1325 (2002). · doi:10.1190/1.1500393
[2] J. Virieux, H. Calandra, and R. É. Plessix, “A review of the spectral, pseudo-spectral, finite-difference and finite-element modeling techniques for geophysical imaging,” Geophys. Prospect. 59 (5), 794-813 (2011). · doi:10.1111/j.1365-2478.2011.00967.x
[3] Virieux, J.; Etienne, V.; etal., Modeling seismic wave propagation for geophysical imaging, 253-304 (2012)
[4] P. Moczo, J. Kristek, and M. Galis, The Finite-Difference Modeling of Earthquake Motions: Waves and Ruptures (Cambridge Univ. Press, Cambridge, 2014). · Zbl 1317.86001 · doi:10.1017/CBO9781139236911
[5] W. Nowacki, Teoria spreżystości (Panstwowe Wydawn. Naukowe, 1970; Mir, Moscow, 1975). · Zbl 0601.73021
[6] V. Etienne, E. Chaljub, et al., “An hp-adaptive discontinuous Galerkin finite-element method for 3D elastic wave modeling,” Geophys. J. Int. 183 (2), 941-962 (2010). · doi:10.1111/j.1365-246X.2010.04764.x
[7] V. Hermann, M. Käser, and C. E. Castro, “Non-conforming hybrid meshes for efficient 2-D wave propagation using the discontinuous Galerkin method,” Geophys. J. Int. 184 (2), 746-758 (2011). · doi:10.1111/j.1365-246X.2010.04858.x
[8] V. A. Miryakha, A. V. Sannikov, and I. B. Petrov, “Discontinuous Galerkin method for numerical simulation of dynamic processes in solids,” Math. Models Comput. Simul. 7 (5), 446-455 (2015). · doi:10.1134/S2070048215050087
[9] E. D. Mercerat and N. Glinsky, “A nodal high-order discontinuous Galerkin method for elastic wave propagation in arbitrary heterogeneous media,” Geophys. J. Int. 201 (2), 1099-1116 (2015). · doi:10.1093/gji/ggv029
[10] F. B. Chelnokov, “Explicit representation of grid-characteristic schemes for elasticity equations in 2D and 3D spaces,” Mat. Model. 18 (6), 96-108 (2006). · Zbl 1132.74049
[11] I. E. Kvasov, S. A. Pankratov, and I. B. Petrov, “Numerical simulation of seismic responses in multilayer geologic media by the grid-characteristic method,” Math. Models Comput. Simul. 3 (2), 196-204 (2011). · doi:10.1134/S2070048211020062
[12] I. B. Petrov, A. V. Favorskaya, et al., “Grid-characteristic method using high-order interpolation on tetrahedral hierarchical meshes with a multiple time step,” Math. Models Comput. Simul. 5 (5), 409-415 (2013). · Zbl 1457.86003 · doi:10.1134/S2070048213050104
[13] V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Simulation of seismic processes inside the planet using the hybrid grid-characteristic method,” Math. Models Comput. Simul. 7 (5), 439-445 (2015). · Zbl 1340.86009 · doi:10.1134/S2070048215050051
[14] V. I. Golubev, I. B. Petrov, et al., “Numerical computation of wave propagation in fractured media by applying the grid-characteristic method on hexahedral meshes,” Comput. Math. Math. Phys. 55 (3), 509-518 (2015). · Zbl 1426.74169 · doi:10.1134/S0965542515030082
[15] I. B. Petrov, A. V. Favorskaya, et al., “Monitoring the state of the moving train by use of high performance systems and modern computation methods,” Math. Models Comput. Simul. 7 (1), 51-61 (2015). · doi:10.1134/S2070048215010081
[16] I. E. Kvasov and I. B. Petrov, “High-performance computer simulation of wave processes in geological media in seismic exploration,” Comput. Math. Math. Phys. 52 (2), 302-313 (2012). · Zbl 1249.86040 · doi:10.1134/S096554251202011X
[17] I. E. Kvasov, V. B. Levyant, and I. B. Petrov, “Numerical simulation of direct responses to sheet zones with subvertical fluid-saturated mesofractures,” Tekhnol. Seismorazvedki, No. 3, 19-35 (2013).
[18] V. I. Golubev, I. B. Petrov, and N. I. Khokhlov, “Numerical simulation of seismic activity by the grid-characteristic method,” Comput. Math. Math. Phys. 53 (10), 1523-1533 (2013). · Zbl 1299.86016 · doi:10.1134/S0965542513100060
[19] I. B. Petrov and N. I. Khokhlov, “Modeling 3D seismic problems using high-performance computing systems,” Math. Models Comput. Simul. 6 (4), 342-350 (2014). · Zbl 1313.86017 · doi:10.1134/S2070048214040061
[20] R. Versteeg, “The Marmousi experience: Velocity model determination on a synthetic complex data set,” The Leading Edge 13, 927-936 (1994). · doi:10.1190/1.1437051
[21] G. S. Martin, R. Wiley, and K. J. Marfurt, “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge 25 (2), 156-166 (2006). · doi:10.1190/1.2172306
[22] J. D. De Basabe and K. Sen Mrinal, “New developments in the finite-element method for seismic modeling,” The Leading Edge 28 (5), 562-567 (2009). · doi:10.1190/1.3124931
[23] C. E. Castro, M. Käser, and G. B. Brietzke, “Seismic waves in heterogeneous material: Subcell resolution of the discontinuous Galerkin method,” Geophys. J. Int. 182 (1), 250-264 (2010).
[24] S. Wenk, C. Pelties, et al., “Regional wave propagation using the discontinuous Galerkin method,” Solid Earth 4 (1), 43-57 (2013). · doi:10.5194/se-4-43-2013
[25] J. Robertsson, R. Laws, et al., “Modeling of scattering of seismic waves from a corrugated rough sea surface: A comparison of three methods,” Geophys. J. Int. 167 (1), 70-76 (2006). · doi:10.1111/j.1365-246X.2006.03115.x
[26] P. Moczo, J. Kristek, et al., “3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analyzed for their accuracy with respect to P-wave to S-wave speed ratio,” Geophys. J. Int. 187 (3), 1645-1667 (2011). · doi:10.1111/j.1365-246X.2011.05221.x
[27] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, New York, 2002). · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[28] M. Käser and M. Dumbser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes. I: The two-dimensional isotropic case with external source terms,” Geophys. J. Int. 166 (2), 855-877 (2006). · doi:10.1111/j.1365-246X.2006.03051.x
[29] L. Wilcox and G. Stadler, et al., “A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media,” J. Comput. Phys. 229 (24), 9373-9396 (2010). · Zbl 1427.74071 · doi:10.1016/j.jcp.2010.09.008
[30] Agapov, P. I.; Chelnokov, F. B., Comparative analysis of difference schemes for the numerical solution of 2D problems in solid mechanics, 19-27 (2003), Moscow
[31] A. S. Kholodov and Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations,” Comput. Math. Math. Phys. 46 (9), 1560-1588 (2006). · Zbl 1096.70005 · doi:10.1134/S0965542506090089
[32] A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001). · Zbl 0965.35001
[33] D. Komatitsch, “The spectral-element method in seismology,” Geophys. Monograph Ser. 157, 205-227 (2005).
[34] J. D. De Basabe and M. K. Sen, “Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations,” Geophysics 72 (6), T81-T95 (2007). · doi:10.1190/1.2785046
[35] M. Käser and M. Dumbser, “A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids,” Geophysics 73 (3), T23-T35 (2008). · doi:10.1190/1.2870081
[36] C. Pelties, M. Käser, et al., “Regular versus irregular meshing for complicated models and their effect on synthetic seismograms,” Geophys. J. Int. 183 (2), 1031-1051 (2010). · doi:10.1111/j.1365-246X.2010.04777.x
[37] G. Bono and A. M. Awruch, “Numerical study between structured and unstructured meshes for Euler and Navier-Stokes equations,” Mec. Comput. 26, 3134-3146 (2007).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.