×

On evolution equations governed by non-autonomous forms. (English) Zbl 1343.35142

The authors consider a linear non-autonomous evolutionary Cauchy problem \[ u_t (t) + A(t)u(t) = f(t) \] where \(A\) is an operator arising from a sesquilinear form on a Hilbert space \(X\) and with a constant domain \(V\). Recently Dier proved a maximal regularity result in \(L^2(0,T; V) \cap H^1 (0,T; H)\). In this paper the authors prove a more general result that provides an alternative proof of the result given by Dier. More precisely, they prove that the solutions of an approximate nonautonomous Cauchy problem in which the sesquilinear form is symmetric and piecewise affine are closed to the solutions of that governed by symmetric and of bounded variation form.

MSC:

35K90 Abstract parabolic equations
35K45 Initial value problems for second-order parabolic systems
47D06 One-parameter semigroups and linear evolution equations
34G10 Linear differential equations in abstract spaces
35K30 Initial value problems for higher-order parabolic equations

References:

[1] W. Arendt, Heat kernels, 9th Internet Seminar (ISEM) 2005/2006, Available at https://www.uni-ulm.de/mawi/iaa/members/professors/arendt.html.
[2] Arendt W., Batty C.J.K., Hieber M., Neubrander F.: Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser Verlag, Basel (2011) · Zbl 1226.34002 · doi:10.1007/978-3-0348-0087-7
[3] Arendt W., Chill R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9, 523-539 (2010) · Zbl 1223.35202
[4] W. Arendt, D. Dier, and E. M. Ouhabaz, Invariance of convex sets for non-autonomous evolution equations governed by forms, Available at http://arxiv.org/abs/1303.1167. · Zbl 1319.35106
[5] Arendt W., Dier D., Laasri H., Ouhabaz E. M.: Maximal regularity for evolution equations governed by non-autonomous forms. Adv. Differential Equations 19, 1043-1066 (2014) · Zbl 1319.35106
[6] W. Arendt and S. Monniaux, Maximal regularity for non-autonomous Robin boundary conditions, 2014, Available at http://arxiv.org/abs/1410.3063v1. · Zbl 06639277
[7] Augner B., Jacob B., Laasri H.: On the right multiplicative perturbation of non-autonomous \[{L^p}\] Lp-maximal regularity. J. Operator Theory 74, 391-415 (2015) · Zbl 1389.35191 · doi:10.7900/jot.2014jul31.2064
[8] Bardos C.: A regularity theorem for parabolic equations. J. Functional Analysis 7, 311-322 (1971) · Zbl 0214.12302 · doi:10.1016/0022-1236(71)90038-3
[9] Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011) · Zbl 1220.46002
[10] Dier D.: Non-autonomous maximal regularity for forms of bounded variation. J. Math. Anal. Appl. 425, 33-54 (2015) · Zbl 1330.35058 · doi:10.1016/j.jmaa.2014.12.006
[11] D. Dier, Non-autonomous evolutionary problems governed by forms: maximal regularity and invariance, PhD-Thesis, Ulm, 2014. · Zbl 1389.35191
[12] R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 8, Masson, Paris, 1988. · Zbl 0642.35001
[13] El-Mennaoui O., Keyantuo V., Laasri H.: Infinitesimal product of semigroups. Ulmer Seminare 16, 219-230 (2011)
[14] El-Mennaoui O., Laasri H.: Stability for non-autonomous linear evolution equations with \[{L^p-}\] Lp- maximal regularity. Czechoslovak Math. J. 63, 887-908 (2013) · Zbl 1313.35203 · doi:10.1007/s10587-013-0060-y
[15] Kato T.: Perturbation Theory For Linear Operators. Springer, Berlin (1992)
[16] Laasri H., Sani A.: Evolution equations governed by Lipschitz continuous non-autonomous forms. Czechoslovak Math. J. 65, 475-491 (2015) · Zbl 1363.35213 · doi:10.1007/s10587-015-0188-z
[17] H. Laasri, Problèmes d’évolution et intégrales produits dans les espaces de Banach, Thèse de Doctorat, Faculté des sciences, Agadir, 2012. · Zbl 1319.35106
[18] Lions J. L.: Equations différentielles opérationnelles et problèmes aux limites. Springer, Berlin, Göttingen, Heidelberg (1961) · Zbl 0098.31101 · doi:10.1007/978-3-662-25839-2
[19] Haak B., Ouhabaz E. M.: Maximal regulariry for non-autonomous evolution equations. Math. Ann. 363, 1117-1145 (2015) · Zbl 1327.35220 · doi:10.1007/s00208-015-1199-7
[20] Ouhabaz E. M.: Maximal regularity for non-autonomous evolution equations governed by forms having less regularity. Arch. Math. 105, 79-91 (2015) · Zbl 1321.35113 · doi:10.1007/s00013-015-0783-0
[21] Ouhabaz E.M., Spina C.: Maximal regularity for nonautonomous Schrödinger type equations. J. Differential Equations 248, 1668-1683 (2010) · Zbl 1190.35132 · doi:10.1016/j.jde.2009.10.004
[22] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. · Zbl 0870.35004
[23] H. Tanabe, Equations of Evolution, Monographs and Studies in Mathematics, Vol. 6, Pitman, Boston, 1979. · Zbl 0417.35003
[24] S. Thomaschewski, Form Methods for Autonomous and Non-Autonomous Cauchy Problems, PhD Thesis, Universität Ulm, 2003.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.