×

A bound on the expected number of random elements to generate a finite group all of whose Sylow subgroups are \(d\)-generated. (English) Zbl 1359.20043

If all the Sylow subgroups of a finite group \(G\) can be generated by \(d\) elements, then \(G\) itself can be generated by \(d+1\) elements.
This result has been proved independently by R. M. Guralnick in [Arch. Math. 53, No. 6, 521–523 (1989; Zbl 0675.20026)] and by the author in [Arch. Math. 53, No. 4, 313–317 (1989; Zbl 0679.20028)].
Given a sequence \(x={(x_n)}_{n \in \mathbb{N}}\) of independent uniformly distributed \(G\)-valued random variables, \(\tau_G=\min\{n \geq 1 \;| \;G= \langle x_1, x_2, \ldots, x_n \rangle\}\) denotes the minimum number of elements for the random generation of \(G\) and \(e(G)\) denotes the expectation of the random variable \(\tau_G\). A probabilistic version of the above result can be formulated in terms of \(e(G)\) (see Theorem 1):
If all the Sylow \(p\)-subgroups (\(p\) prime) of (a finite group) \(G\) can be generated by \(d\) elements, then \(e(G) \leq d + \eta\), where \(\eta = \frac{5}{2} + \sum_{p \geq 3} \frac{1}{{(p-1)}^2}<3\).
An accurate estimation of the term \(\sum_{p \geq 3} \frac{1}{{(p-1)}^2}\) is possible, thanks to a recent result of H. Cohen [“High precision computation of Hardy-Littlewood constants”, Preprint]; in fact \(\eta \simeq 2.875065\dots\).
As corollary (see Corollary 2), the author obtains that if \(G\) is a permutation group of degree \(n\), then \(e(G) \leq \lfloor n/2 \rfloor + \eta\).
Finally, the presence of the Haar measure allows an important extension of the original result to the infinite case, considering profinite groups, namely if all the Sylow subgroups of a profinite group \(G\) are topologically \(d\)-generated, then \(G\) is topologically \((d+1)\)-generated and \(e(G) \leq d + \eta\). A weaker formulation of this result is presented by the final Theorem 3.
The proof of the main result (Theorem 1) is divided into three lemmas, which use a series of important concepts of number theory, combinatorics, probabilistic group theory, and co-homology.

MSC:

20P05 Probabilistic methods in group theory
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20E18 Limits, profinite groups
20F05 Generators, relations, and presentations of groups

References:

[1] H. Cohen, High precision computation of Hardy-Littlewood constants, preprint available on the author’s web page.
[2] E. Detomi and A. Lucchini, Crowns in profinite groups and applications, Noncommutative algebra and geometry, pp. 47-62, Lect. Notes Pure Appl. Math., vol. 243., Chapman Hall/CRC, Boca Raton, 2006. · Zbl 1092.20022
[3] B. Huppert, Endliche Gruppen, Die Grundlehren der mathematischen Wissenschaften, Band 134. Springer, Berlin, 1967. · Zbl 0217.07201
[4] Gaschütz W.: Die Eulersche Funktion endlicher auflösbarer Gruppen, Ill. J. Math. 3, 469-476 (1959) · Zbl 0093.25002
[5] Guralnick R.: On the number of generators of a finite group. Arch. Math. 53, 521-523 (1989) · Zbl 0675.20026 · doi:10.1007/BF01199809
[6] R. Guralnick and C. Hoffman, The first cohomology group and generation of simple groups, in: Proc. Conf. Groups and Geometres, Sienna, 1996, in: Trends Math., Birkhäuser, Basel, 1998, pp. 81-89. · Zbl 0894.20039
[7] Kantor W. M., Lubotzky A.: The probability of generating a finite classical group. Geom. Ded. 36, 67-87 (1990) · Zbl 0718.20011 · doi:10.1007/BF00181465
[8] Kovács L. G., Praeger C. E.: Finite permutation groups with large abelian quotients. Pacific J. Math. 136, 283-292 (1989) · Zbl 0679.20002 · doi:10.2140/pjm.1989.136.283
[9] Lubotzky A.: The expected number of random elements to generate a finite group. J. Algebra 257, 452-495 (2002) · Zbl 1042.20047 · doi:10.1016/S0021-8693(02)00528-8
[10] A. Lubotzky and D. Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser, Basel, 2003. · Zbl 1071.20033
[11] Lucchini A.: A bound on the number of generators of a finite group. Arch. Math. 53, 313-317 (1989) · Zbl 0679.20028 · doi:10.1007/BF01195209
[12] A. Lucchini, The expected number of random elements to generate a finite group, Monatsh. Math. doi:10.1007/s00605-015-0789-5. · Zbl 1383.20041
[13] Pomerance C.: The expected number of random elements to generate a finite abelian group. Period. Math. Hungar. 43, 191-198 (2001) · Zbl 0980.20079 · doi:10.1023/A:1015250102792
[14] U. Stammbach, Cohomological characterisations of finite solvable and nilpotent groups, J. Pure Appl. Algebra 11 (1977/1978), 293-301. · Zbl 0374.20060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.