×

A note on the \(\rho\)-Nitsche conjecture. (English) Zbl 1352.30037

Let \(\rho\) be a radial symmetric Riemannian metric defined in the annulus \(A(1, R)\). It was D. Kalaj who conjectured in [“Deformations of annuli on Riemann surfaces with smallest mean distortion”, arXiv:1005.5269]) that, if there exists a \(\rho\)-harmonic homeomorphism from the annulus \(A(1, r)\) onto \(A(1, R)\), then \(R\) satisfies the so-called \(\rho\)-Nitsche condition \[ r\leq\exp\left(\int\limits_{1}^{R}\frac{\rho(s)ds}{\sqrt{s^2\rho^2(s)-\alpha_0}}\right), \quad\alpha_{0}=\inf_{1\leq s\leq R}(\rho^{2}(s))s^{2}. \] The authors prove that if \(\rho(w) = |w|^{-2}\), then there exists a \(\rho\)-harmonic mapping between \(A(1, r)\) and \(A(1, R)\) if and only if the classical Nitsche condition \(r\leq R + \sqrt{R^2-1}\) holds. But the \(\rho\)-Nitsche condition becomes the classical Nitsche condition for the chosen \(\rho\); this yields the validity of the \(\rho\)-Nitsche condition. Hence the authors provide a positive answer to Kalaj’s conjecture for \(\rho(w) = |w|^{-2}\). Several related topics for mappings of finite distortion are also discussed.

MSC:

30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)
Full Text: DOI

References:

[1] K. Astala, T. Iwaniec, and G. J. Martin, Elliptic Partial Diffenrential Equations and Quasiconformal Mappings in the Plane, Princeton University Press, Princeton and Oxford, 2009. · Zbl 1182.30001
[2] Astala K., Iwaniec T., Martin G. J.: Deformations of annuli with smallest mean distortion. Arch. Rat. Mech. Anal. 195, 899-921 (2010) · Zbl 1219.30011 · doi:10.1007/s00205-009-0231-z
[3] Astala K., Iwaniec T., Martin G. J., Onninen J.: Extremal mappings of finite distortion. Proc. London Math. Soc. 91, 655-702 (2005) · Zbl 1089.30013 · doi:10.1112/S0024611505015376
[4] Feng X. G., Tang S. A., Wu C., Shen Y. L.: A unified approach to the weighted Grötzsch and Nitsche problems for mappings of finite distortion. China Math. Sci 59, 673-686 (2016) · Zbl 1351.30009 · doi:10.1007/s11425-015-5078-1
[5] Iwaniec T., Kovalev L.V., Onninen J.: The Nitsche conjecture. J. Amer. Math. Soc. 24, 345-373 (2011) · Zbl 1214.31001 · doi:10.1090/S0894-0347-2010-00685-6
[6] Iwaniec T., Martin G. J., Onninen J.: On minimisers of \[{L^p}\] Lp-mean distortion. Comput. Meth. Funct. Theory 14, 399-416 (2014) · Zbl 1316.30021 · doi:10.1007/s40315-014-0063-1
[7] Jost J.: Compact Riemann Surfaces. Springer, Berlin (2006) · Zbl 1125.30033 · doi:10.1007/978-3-540-33067-7
[8] Kalaj D.: On the Nitsche conjecture for harmonic mappings in \[{\mathbb{R}^2}\] R2 and \[{\mathbb{R}^3}\] R3. Israel J. Math. 150, 241-251 (2005) · Zbl 1136.31300 · doi:10.1007/BF02762382
[9] Kalaj D.: Harmonic maps between annuli on Riemann surfaces. Israel J. Math. 182, 123-147 (2011) · Zbl 1214.30029 · doi:10.1007/s11856-011-0026-4
[10] D. Kalaj, Deformations of annuli on Riemann surfaces with smallest mean distortion (2010). arXiv:1005.5269 [math.CV] · Zbl 1219.30011
[11] Lyzzaik A.: The modulus of the image of annuli under univalent harmonic mappings and a conjecture of J.C.C.Nitsche. J. London Math. Soc. 64, 369-384 (2001) · Zbl 1136.30308 · doi:10.1112/S0024610701002460
[12] Martin G. J.: The Teichmüller problem for mean distortion. Ann. Acad. Sci. Fenn. A I Math. 34, 233-247 (2009) · Zbl 1182.30030
[13] Martin G. J., McKubre-Jordens M.: Deformation with smallest weighted \[{L^p}\] Lp average distortion and Nitsche-type phenomena. J. London Math. Soc. 85, 282-300 (2012) · Zbl 1294.30049 · doi:10.1112/jlms/jdr042
[14] Nitsche J. C. C.: On the modulus of doubly connected regions under harmonic mappings, Amer. Math. Monthly 69, 781-782 (1962) · Zbl 0109.30503 · doi:10.2307/2310779
[15] Nitsche J. C. C.: A necessary criterion for the existence of certain minimal surfaces. J. Math. Mech. 13, 659-666 (1964) · Zbl 0168.42304
[16] Weitsman A.: Univalent harmonic mappings of annuli and a conjecture of J.C.C. Nitsche. Israel J. Math. 124, 327-331 (2001) · Zbl 1011.31001 · doi:10.1007/BF02772628
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.