×

Asymptotic behavior of the \(p\)-torsion functions as \(p\) goes to 1. (English) Zbl 1344.35057

Summary: Let \(\Omega\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq 2}\), and let \(u_p\in W_0^{1,p}(\Omega)\) denote the \(p\)-torsion function of \({\Omega}\), \(p >1\). It is observed that the value 1 for the Cheeger constant \(h(\Omega)\) is threshold with respect to the asymptotic behavior of \(u_{p}\), as \(p\to 1^+\), in the following sense: when \(h(\Omega) > 1\), one has \(\lim_{p\to 1^+} \left\|u_{p} \right\| _{L^\infty(\Omega)}=0\), and when \({h(\Omega) < 1}\), one has \(\lim_{p\to 1^+} \left\|u_p\right\| _{L^\infty(\Omega)}=\infty\). In the case \(h(\Omega)=1\), it is proved that \(\limsup_{p\to1^+}\left\| u_p\right\|_{L^\infty(\Omega)}<\infty\). For a radial annulus \(\Omega_{a,b}\), with inner radius \(a\) and outer radius \(b\), it is proved that \({\lim_{p\to 1^+} \left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \(h(\Omega_{a,b})=1\).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
49Q20 Variational problems in a geometric measure-theoretic setting
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Bueno H., Ercole G.: On the p-torsion functions of an annulus. Asymp. Anal. 92, 235-247 (2015) · Zbl 1334.49140
[2] Bueno H., Ercole G.: Solutions of the Cheeger problem via torsion functions. J. Math. Anal. Appl. 381, 263-279 (2011) · Zbl 1260.49080 · doi:10.1016/j.jmaa.2011.03.002
[3] F. Demengel, Some existence results for partial differential equations involving the 1-Laplacian: first eigenvalue for \[{-\Delta_1}\]-Δ1, C.R. Math. Acad. Sci. Paris 334 (2002), 1071-1076. · Zbl 1142.35408
[4] Guedda M., Véron L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879-902 (1989) · Zbl 0714.35032 · doi:10.1016/0362-546X(89)90020-5
[5] Kawohl B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1-22 (1990) · Zbl 0701.35015
[6] B. Kawohl, Variations on the p-Laplacian, Nonlinear Elliptic Partial Differential Equations. Contemporary Mathematics, vol. 540, American Mathematical Society, Providence, 2011, 35-46. · Zbl 1241.35109
[7] Kawohl B., Fridman V.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comm. Math. Univ. Carol. 44, 659-667 (2003) · Zbl 1105.35029
[8] Kawohl B., Schuricht F.: Dirichlet problem for the 1-Laplace operator, including the eigenvalue problem. Comm. Contemp. Math. 9, 515-543 (2007) · Zbl 1146.35023 · doi:10.1142/S0219199707002514
[9] Parini E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9-21 (2011) · Zbl 1399.49023
[10] L. E. Payne and G. A. Philippin, Some maximum principles for nonlinear elliptic equations in divergence form with applications to capilarity surfaces and to surfaces of constant mean curvature, Nonlinear Anal. 3 (1979), 193-211. · Zbl 0408.35015
[11] S. Sakaguchi, Concavity properties of solutions to some degenerated quasilinear elliptic Dirichlet problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (1987), 403-421. · Zbl 0665.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.