×

Algebras whose multiplication algebra is PI or GPI. (English) Zbl 1418.17003

From the text: “We obtain nonassociative extensions of some basic results in the associative PI and GPI theories, such as Regev’s tensor product PI-theorem, Kaplansky’s primitive PI-theorem, Posner’s prime PI-theorem, Amitsur’s primitive GPI-theorem, and Martindale’s prime GPI-theorem.”
“Section 1 is devoted to the study of algebras with PI multiplication algebra, providing nonassociative extensions of the classical theorems by Regev on tensor products of associative PI-algebras, by Kaplansky on primitive associative PI-algebras, and by Posner on prime associative PI-algebras.
Section 2 discusses multiplicatively prime (m.p.) algebras with GPI multiplication algebra, and contains associative and nonassociative GPI-versions of the Regev theorem. Moreover, we provide nonassociative extensions of the Amitsur theorem on primitive associative GPI-algebras and of the Martindale prime GPI-theorem.
Section 3 is devoted to complete the nonassociative Martindale and Posner theorems obtained in sections 2 and 1, respectively. Our development relies on the introduction of a reasonable notion of multiplicative generalized polynomial (in short MGP) for m.p. algebras. Roughly speaking, for a given m.p. algebra \(A\), a MGP is a finite sum of monomials of the form \(F_1X_{i_1}F_2X_{i_2}\cdots F_nX_{i_n}(q)\) for \(n\in\mathbb N\), \(q\in Q_A\), \(F_1,\ldots,F_n\in M_{C_A}(Q_A)\), and \(X_{i_1}, X_{i_2},\ldots,X_{i_n}\) noncommutative formal variables. We say that \(M(A)\) satisfy a MGP \(\Phi = \Phi(X_1,\ldots,X_n)\), or that \(\Phi\) is a MGPI on \(M(A)\), if \(\Phi(T_1,\ldots,T_n)\) for all \(T_1,\ldots,T_n\in M(A)\). As a matter of fact, the existence of a nonzero MGPI on \(M(A)\) is equivalent to the fact that \(M(A)\) is GPI.”

MSC:

17A30 Nonassociative algebras satisfying other identities
16R20 Semiprime p.i. rings, rings embeddable in matrices over commutative rings
16R50 Other kinds of identities (generalized polynomial, rational, involution)
Full Text: DOI

References:

[1] Albert, A. A., The radical of a non-associative algebra, Bull. Amer. Math. Soc., 48, 891-897 (1942) · Zbl 0061.05001
[2] Amitsur, S. A., Generalized polynomial identities and pivotal monomials, Trans. Amer. Math. Soc., 114, 210-226 (1965) · Zbl 0131.03202
[3] Ánh, P. N.; Márki, L., On Martindale’s theorem, Rocky Mountain J. Math., 26, 481-483 (1996) · Zbl 0860.16018
[4] Bahturin, Yu. A., Identical Relations in Lie Algebras (1987), VNU Science Press: VNU Science Press Utrecht · Zbl 0691.17001
[5] Baxter, W. E.; Martindale, W. S., Central closure of semiprime nonassociative rings, Comm. Algebra, 7, 1103-1132 (1979) · Zbl 0415.17002
[6] Beidar, K. I.; Martindale, W. S.; Mikhalev, A. V., Rings with Generalized Identities (1996), Marcel Dekker: Marcel Dekker New York · Zbl 0847.16001
[7] Bresar, M., An alternative approach to the structure theory of PI-rings, Expo. Math., 29, 159-164 (2011) · Zbl 1231.16020
[8] Bresar, M., A unified approach to the structure theory of PI-rings and GPI-rings, Serdica Math. J., 38, 199-210 (2012) · Zbl 1374.16051
[9] Bresar, M.; Chebotar, M. A.; Martindale, W. S., Functional Identities (2007), Birkhauser Verlag: Birkhauser Verlag Basel-Boston-Berlin · Zbl 1132.16001
[10] Cabello, J. C.; Cabrera, M., Structure theory for multiplicatively semiprime algebras, J. Algebra, 282, 386-421 (2004) · Zbl 1124.17002
[11] Cabello, J. C.; Cabrera, M.; López, G.; Martindale, W. S., Multiplicative semiprimeness of skew Lie algebras, Comm. Algebra, 32, 3487-3501 (2004) · Zbl 1086.17004
[12] Cabello, J. C.; Cabrera, M.; Nieto, E., \(ε\)-complemented algebras, J. Algebra, 349, 234-267 (2012) · Zbl 1287.17005
[13] Cabello, J. C.; Cabrera, M.; Roura, R., A note on the multiplicative primeness of degenerate Jordan algebras, Sib. Math. J., 51, 818-823 (2010) · Zbl 1208.17023
[14] Cabello, J. C.; Cabrera, M.; Roura, R., \(π\)-complementation in the unitisation and multiplication algebras of a semiprime algebra, Comm. Algebra, 40, 3507-3531 (2012) · Zbl 1287.17006
[15] Cabrera, M.; Mohammed, A. A., Extended centroid and central closure of the multiplication algebra, Comm. Algebra, 27, 5723-5736 (1999) · Zbl 0949.17001
[16] Cabrera, M.; Mohammed, A. A., Totally multiplicatively prime algebras, Proc. Roy. Soc. Edinburgh Sect. A, 132, 1145-1162 (2002) · Zbl 1041.46028
[17] Cabrera, M.; Rodríguez, A., Extended centroid and central closure of semiprime normed algebras. A first approach, Comm. Algebra, 18, 2293-2326 (1990) · Zbl 0713.46033
[18] Cabrera, M.; Rodríguez, A., Non-associative Normed Algebras Volume 1: The Vidav-Palmer and Gelfand-Naimark Theorems, Encyclopedia Math. Appl., vol. 154 (2014), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1322.46003
[19] Cabrera, M.; Villena, A. R., Multiplicative-semiprimeness of nondegenerate Jordan algebras, Comm. Algebra, 32, 3995-4003 (2004) · Zbl 1086.17014
[20] Chuang, C. L., A short proof of Martindale’s theorem on GPIs, J. Algebra, 151, 156-159 (1992) · Zbl 0769.16010
[21] Erickson, T. S.; Martindale, W. S.; Osborn, J. M., Prime nonassociative algebras, Pacific J. Math., 60, 49-63 (1975) · Zbl 0355.17005
[22] Fernández, A.; Tocón, M. I., The local algebras of an associative algebra and their applications, (Misra, J. C., Applicable Mathematics in the Golden Age, 2003 (2002), Narosa: Narosa New Delhi), 254-275
[23] Jacobson, N., A note on non-associative algebras, Duke Math. J., 3, 544-548 (1937) · JFM 63.0088.03
[24] Jacobson, N., Structure of Rings, Amer. Math. Soc. Colloq. Publ., vol. 37 (1956), Providence · Zbl 0073.02002
[25] Jacobson, N., Abraham Adrian Albert 1905-1972, Bull. Amer. Math. Soc., 80, 1075-1100 (1974) · Zbl 0292.01025
[26] Kaplansky, I., Rings with a polynomial identity, Bull. Amer. Math. Soc., 54, 575-580 (1948) · Zbl 0032.00701
[27] Lanski, Ch., A note on GPIs and their coefficients, Proc. Amer. Math. Soc., 98, 17-19 (1986) · Zbl 0608.16022
[28] Latyshev, V. N., On Lie algebras with identical relations, Sibirsk. Mat. Zh., 4, 821-829 (1963) · Zbl 0178.36201
[29] Martindale, W. S., Prime rings satisfying a generalized polynomial identity, J. Algebra, 12, 576-584 (1969) · Zbl 0175.03102
[30] Matczuk, J., Central closure of semiprime tensor products, Comm. Algebra, 10, 263-278 (1982) · Zbl 0487.16006
[31] Montaner, F., Local PI-theory for Jordan systems, J. Algebra, 216, 302-327 (1999) · Zbl 0990.17025
[32] Pikhtilkov, S. A., Structural theory of special Lie algebras, J. Math. Sci., 136, 4090-4115 (2006) · Zbl 1213.17006
[33] Posner, E., Prime rings satisfying a polynomial identity, Arch. Math., 11, 180-183 (1960) · Zbl 0215.38101
[34] Razmyslov, Yu. P., Identities of Algebras and Their Representations, Transl. Math. Monogr., vol. 138 (1994), AMS · Zbl 0827.17001
[35] Regev, A., Existence of identities in \(A \otimes_F B\), Israel J. Math., 11, 131-152 (1972) · Zbl 0249.16007
[36] Rowen, L. H., On rings with central polynomials, J. Algebra, 31, 393-426 (1974) · Zbl 0286.16011
[37] Rowen, L. H., The theory of generalized polynomial identities, (Jain, S. K.; Eldridge, K. E., Ring Theory, Proc. Conf.. Ring Theory, Proc. Conf., Ohio Univ., Athens, Ohio, 1976. Ring Theory, Proc. Conf.. Ring Theory, Proc. Conf., Ohio Univ., Athens, Ohio, 1976, Lect. Notes Pure Appl. Math., vol. 25 (1977), Dekker: Dekker New York), 15-61 · Zbl 0356.16004
[38] Wisbauer, R., Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Monogr. Surv. Pure Appl. Math., vol. 81 (1996), Longman: Longman Harlow · Zbl 0861.16001
[39] Zaitsev, M. V., Special Lie algebras, Russian Math. Surveys, 48, 111-152 (1993) · Zbl 0828.17006
[40] Zhevlakov, K. A.; Slinko, A. M.; Shestakov, I. P.; Shirshov, A. I., Rings That Are Nearly Associative, Pure Appl. Math., vol. 104 (1982), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers] New York-London, translated from Russian by Harry F. Smith · Zbl 0487.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.