×

Perfect state transfer in Laplacian quantum walk. (English) Zbl 1339.05220

Summary: For a graph \(G\) and a related symmetric matrix \(M\), the continuous-time quantum walk on \(G\) relative to \(M\) is defined as the unitary matrix \(U(t) = \exp (-itM)\), where \(t\) varies over the reals. Perfect state transfer occurs between vertices \(u\) and \(v\) at time \(\tau \) if the \((u,v)\)-entry of \(U(\tau )\) has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an \(n\)-vertex graph has perfect state transfer at time \(\tau \) relative to the Laplacian, then so does its complement if \(n\tau \in 2\pi {\mathbb {Z}}\). As a corollary, the join of \(\overline{K}_{2}\) with any \(m\)-vertex graph has perfect state transfer relative to the Laplacian if and only if \(m \equiv 2\pmod {4}\). This was previously known for the join of \(\overline{K}_{2}\) with a clique [S. Bose et al., Int. J. Quantum Inf. 7, No. 4, 713–723 (2009; Zbl 1172.81004)]. If a graph \(G\) has perfect state transfer at time \(\tau \) relative to the normalized Laplacian, then so does the weak product \(G \times H\) if for any normalized Laplacian eigenvalues \(\lambda \) of \(G\) and \(\mu \) of \(H\), we have \(\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}\). As a corollary, a weak product of \(P_{3}\) with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of \(P_{3}\) has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix [C. Godsil, Discrete Math. 312, No. 1, 129–147 (2012; Zbl 1232.05123)].

MSC:

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C81 Random walks on graphs
81P68 Quantum computation

References:

[1] Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs. Monograph (2002) · Zbl 1241.81079
[2] Angeles-Canul, R.J., Norton, R., Opperman, M., Paribello, C., Russell, M., Tamon, C.: Perfect state transfer, integral circulants and join of graphs. Quantum Inf. Comput. 10(3&4), 325-342 (2010) · Zbl 1236.81049
[3] Bachman, R., Fredette, E., Fuller, J., Landry, M., Opperman, M., Tamon, C., Tollefson, A.: Perfect state transfer on quotient graphs. Quantum Inf. Comput. 10(3&4), 293-313 (2012) · Zbl 1256.81018
[4] Bayat, A., Banchi, L., Bose, S., Verruchi, P.: Initializing an unmodulated spin chain to operate as a high-quality data bus. Phys. Rev. A 83, 062328 (2011) · doi:10.1103/PhysRevA.83.062328
[5] Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91(20), 207901 (2003) · doi:10.1103/PhysRevLett.91.207901
[6] Bose, S., Casaccino, A., Mancini, S., Severini, S.: Communication in XYZ all-to-all quantum networks with a missing link. Int. J. Quantum Inf. 7(4), 713-723 (2009) · Zbl 1172.81004 · doi:10.1142/S0219749909005389
[7] Cardoso, D., Delorme, C., Rama, P.: Laplacian eigenvectors and eigenvalues and almost equitable partitions. Eur. J. Comb. 28(3), 665-673 (2007) · Zbl 1114.05057 · doi:10.1016/j.ejc.2005.03.006
[8] Childs, A.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009) · doi:10.1103/PhysRevLett.102.180501
[9] Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th ACM Symposium on Theory of Computing, pp. 59-68 (2003) · Zbl 1192.81059
[10] Christandl, M., Datta, N., Dorlas, T., Ekert, A., Kay, A., Landahl, A.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005) · doi:10.1103/PhysRevA.71.032312
[11] Christandl, M., Datta, N., Ekert, A., Landahl, A.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004) · doi:10.1103/PhysRevLett.92.187902
[12] Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Providence (1996) · doi:10.1090/cbms/092
[13] Coutinho, G., Liu, H.: No Laplacian perfect state transfer in trees. arXiv:1408.2935 [math.CO] · Zbl 1327.05202
[14] Doob, M.: An interrelation between line graphs, eigenvalues, and matroids. J. Comb. Theory Ser. B 15, 40-50 (1973) · Zbl 0245.05125 · doi:10.1016/0095-8956(73)90030-0
[15] Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the hamiltonian NAND tree. Theory Comput. 4(8), 169-190 (2008) · Zbl 1213.68284 · doi:10.4086/toc.2008.v004a008
[16] Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915-928 (1998) · Zbl 0988.83043 · doi:10.1103/PhysRevA.58.915
[17] Ge, Y., Greenberg, B., Perez, O., Tamon, C.: Perfect state transfer, graph products and equitable partitions. Int. J. Quantum Inf. 9(3), 823-842 (2011) · Zbl 1222.81133 · doi:10.1142/S0219749911007472
[18] Godsil, C.: Graph Spectra and Quantum Walks. Manuscript (2014)
[19] Godsil, C.: State transfer on graphs. Discret. Math. 312(1), 129-147 (2011) · Zbl 1232.05123 · doi:10.1016/j.disc.2011.06.032
[20] Godsil, C.: Controllable subsets in graphs. Ann. Comb. 16, 733-744 (2012) · Zbl 1256.05139 · doi:10.1007/s00026-012-0156-3
[21] Godsil, C.: When can perfect state transfer occur? Electron. J. Linear Algebra 23, 877-890 (2012) · Zbl 1253.05093 · doi:10.13001/1081-3810.1563
[22] Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, Berlin (2001) · Zbl 0968.05002 · doi:10.1007/978-1-4613-0163-9
[23] Godsil, C., Severini, S.: Control by quantum dynamics on graphs. Phys. Rev. A 81, 052316 (2010) · doi:10.1103/PhysRevA.81.052316
[24] Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994) · Zbl 0836.00001
[25] Grimmett, G., Stirzaker, D.: Probability and Random Processes. Oxford University Press, Oxford (1982) · Zbl 0493.60001
[26] Grünbaum, A., Vinet, L., Zhedanov, A.: Birth and death processes and quantum spin chains. J. Math. Phys. 54, 062101 (2013) · Zbl 1285.82028 · doi:10.1063/1.4808235
[27] Ide, Y., Konno, N.: Continuous-time quantum walks on the threshold network model. Math. Struct. Comput. Sci. 20(6), 1079-1090 (2010) · Zbl 1204.81079 · doi:10.1017/S0960129510000381
[28] Lin, Y., Lippner, G., Yau, S.T.: Quantum tunneling on graphs. Commun. Math. Phys. 311, 113-132 (2012) · Zbl 1241.81079 · doi:10.1007/s00220-012-1453-8
[29] Moore, C., Russell, A.: Quantum walks on the hypercube. In: Proceedings of the 6th International Workshop on Randomization and Approximation in Computer Science, volume 2483 of Lecturer Notes in Computer Science, pp. 164-178. Springer, Berlin (2002) · Zbl 1028.68570
[30] Newman, M.W.: The Laplacian Spectrum of Graphs. Master’s thesis, University of Manitoba, Winnipeg, Canada (2000)
[31] Niven, I.: Irrational Numbers. The Mathematical Association of America, Washington, DC (1965) · Zbl 0070.27101
[32] Spielman, D.; Naumann, U. (ed.); Schenk, O. (ed.), Spectral graph theory (2012), Boca Raton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.