×

Zames-Falb multipliers for absolute stability: from O’Shea’s contribution to convex searches. (English) Zbl 1336.93120

Summary: Absolute stability attracted much attention in the 1960s. Several stability conditions for loops with slope-restricted nonlinearities were developed. Results such as the circle criterion and the Popov criterion form part of the core curriculum for students of control. Moreover, the equivalence of results obtained by different techniques, specifically Lyapunov and Popovs stability theories, led to one of the most important results in control engineering: the KYP Lemma.
For Lur’e systems this work culminated in the class of multipliers proposed by R. O’Shea in [“A combined frequency-time domain stability criterion for autonomous continuous systems”, IEEE Trans. Autom. Control 11, No. 3, 477–484 (1966; doi:10.1109/TAC.1966.1098402)] and formalized by G. Zames and P. L. Falb [SIAM J. Control 6, 89–108 (1968; Zbl 0157.15801)]. The superiority of this class was quickly and widely accepted. Nevertheless the result was ahead of its time as graphical techniques were preferred in the absence of readily available computer optimization. Its first systematic use as a stability criterion came 20 years after the initial proposal of the class. A further 20 years have been required to develop a proper understanding of the different techniques that can be used. In this long gestation some significant knowledge has been overlooked or forgotten. Most significantly, O’Shea’s contribution and insight is no longer acknowledged; his papers are barely cited despite his original parameterization of the class.
This tutorial paper aims to provide a clear and comprehensive introduction to the topic from a users viewpoint. We review the main results: the stability theory, the properties of the multipliers (including their phase properties, phase-equivalence results and the issues associated with causality), and convex searches. For clarity of exposition we restrict our attention to continuous time multipliers for single-input single-output results. Nevertheless we include several recent significant developments by the authors and others. We illustrate all these topics using an example proposed by O’Shea himself.

MSC:

93D09 Robust stability
93C10 Nonlinear systems in control theory

Citations:

Zbl 0157.15801

Software:

IQC

References:

[1] Abedor, J.; Nagpal, K.; Poolla, K., A linear matrix inequality approach to peak-to-peak gain minimization, Int. J. Robust Nonlinear Control, 6, 9-10, 899-927 (1996) · Zbl 0862.93028
[4] Altshuller, D.; Proskurnikov, A.; Yakubovich, V., Frequency-domain criteria for dichotomy and absolute stability for integral equations with quadratic constraints involving delays, Dokl. Math., 2004, 70, 998-1002 (2004) · Zbl 1069.45003
[6] Altshuller, D. A., Delay-integral-quadratic constraints and stability multipliers for systems with MIMO nonlinearities, IEEE Trans. Autom. Control, 56, 4, 738-747 (2011) · Zbl 1368.93516
[8] Barabanov, N. E., On the Kalman problem, Sib. Math. J., 29, 333-341 (1988) · Zbl 0713.93044
[9] Brockett, R.; Willems, J. L., Frequency domain stability criteria—Part i, IEEE Trans. Autom. Control, 10, 3, 255-261 (1965)
[12] Carrasco, J.; Heath, W.; Li, G.; Lanzon, A., Comments on “On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities”, IEEE Trans. Autom. Control, 57, 9, 2422-2428 (2012) · Zbl 1369.93478
[13] Carrasco, J.; Heath, W. P.; Lanzon, A., Factorization of multipliers in passivity and IQC analysis, Automatica, 48, 5, 609-616 (2012) · Zbl 1246.93033
[14] Carrasco, J.; Heath, W. P.; Lanzon, A., Equivalence between classes of multipliers for slope-restricted nonlinearities, Automatica, 49, 6, 1732-1740 (2013) · Zbl 1360.93519
[15] Carrasco, J.; Heath, W. P.; Lanzon, A., On multipliers for bounded and monotone nonlinearities, Syst. Control Lett., 66, 65-71 (2014) · Zbl 1288.93076
[16] Carrasco, J.; Maya-Gonzalez, M.; Lanzon, A.; Heath, W. P., LMI searches for anticausal and noncausal rational Zames-Falb multipliers, Syst. Control Lett., 70, 17-22 (2014) · Zbl 1290.93136
[17] Chang, M.; Mancera, R.; Safonov, M., Computation of Zames-Falb multipliers revisited, IEEE Trans. Autom. Control, 57, 4, 1024-1029 (2012) · Zbl 1369.93470
[19] Chen, X.; Wen, J., Robustness analysis for linear time-invariant systems with structured incrementally sector bounded feedback nonlinearities, Appl. Math. Comput. Sci., 6, 623-648 (1996) · Zbl 0870.93011
[20] Cho, Y.-S.; Narendra, K., An off-axis circle criterion for stability of feedback systems with a monotonic nonlinearity, IEEE Trans. Autom. Control, 13, 4, 413-416 (1968)
[21] D׳Amato, F. J.; Rotea, M. A.; Megretski, A. V.; Jönsson, U. T., New results for analysis of systems with repeated nonlinearities, Automatica, 37, 5, 739-747 (2001) · Zbl 1058.93044
[23] Falb, P.; Zames, G., On cross-correlation bounds and the positivity of certain nonlinear operators, IEEE Trans. Autom. Control, 12, 2, 219-221 (1967)
[24] Falb, P.; Zames, G., Multipliers with real poles and zerosan application of a theorem on stability conditions, IEEE Trans. Autom. Control, 13, 1, 125-126 (1968)
[25] Fang, H.; Lin, Z.; Rotea, M., On IQC approach to the analysis and design of linear systems subject to actuator saturation, Syst. Control Lett., 57, 8, 611-619 (2008) · Zbl 1140.93344
[26] Fitts, R., Two counterexamples to Aizerman׳s conjecture, IEEE Trans. Autom. Control, 11, 3, 553-556 (1966)
[27] Freedman, M. I., Phase function norm estimates for stability of systems with monotone nonlinearities, SIAM J. Control, 10, 1, 99-111 (1972) · Zbl 0256.93038
[28] Gapski, P.; Geromel, J., A convex approach to the absolute stability problem, IEEE Trans. Autom. Control, 39, 9, 1929-1932 (1994) · Zbl 0925.93816
[29] Georgiou, T.; Smith, M., Intrinsic difficulties in using the doubly-infinite time axis for input-output control theory, IEEE Trans. Autom. Control, 40, 3, 516-518 (1995) · Zbl 0821.93006
[30] Heath, W. P.; Carrasco, J.; de la Sen, M., Second-order counterexamples to the discrete-time Kalman conjecture, Automatica, 60, 140-144 (2015) · Zbl 1331.93168
[31] Heath, W. P.; Wills, A. G., Zames-Falb multipliers for quadratic programming, IEEE Trans. Autom. Control, 52, 10, 1948-1951 (2007) · Zbl 1366.90155
[33] Jönsson, U.; Rantzer, A., Duality bounds in robustness analysis, Automatica, 33, 10, 1835-1844 (1997) · Zbl 0889.93044
[35] Kalman, R. E., Physical and mathematical mechanisms of instability in nonlinear automatic control systems, Trans. ASME, 79, 3, 553-566 (1957)
[37] Kerr, M.; Turner, M. C.; Villota, E.; Jayasuriya, S.; Postlethwaite, I., A robust anti-windup design procedure for SISO systems, Int. J. Control, 84, 2, 351-369 (2011) · Zbl 1221.93077
[39] Kothare, M. V.; Morari, M., Multiplier theory for stability analysis of anti-windup control systems, Automatica, 35, 5, 917-928 (1999) · Zbl 0935.93048
[40] Kulkarni, V.; Safonov, M., All multipliers for repeated monotone nonlinearities, IEEE Trans. Autom. Control, 47, 7, 1209-1212 (2002) · Zbl 1364.93681
[41] Kulkarni, V. V.; Pao, L. Y.; Safonov, M. G., On stability analysis of systems featuring a multiplicative combination of nonlinear and linear time-invariant feedback, Int. J. Robust Nonlinear Control, 21, 18, 2101-2108 (2011) · Zbl 1237.93150
[42] Kulkarni, V. V.; Pao, L. Y.; Safonov, M. G., Positivity preservation properties of the Rantzer multipliers, IEEE Trans. Autom. Control, 56, 1, 190-194 (2011) · Zbl 1368.93644
[43] Kuznetsov, N. V.; Leonov, G. A.; Seledzhi, S. M., Hidden oscillations in nonlinear control systems, IFAC Proc. Vol., 18, 1, 2506-2510 (2011)
[45] Leonov, G. A.; Kuznetsov, N. V., Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems, IFAC Proc. Vol., 18, 1, 2494-2505 (2011)
[46] Leonov, G.; Kuznetsov, N., Hidden attractors in dynamical systems from hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, Int. J. Bifurc. Chaos, 23, 10, 1330002 (2013) · Zbl 1270.34003
[47] Liberzon, M., Essays on the absolute stability theory, Autom. Remote Control, 67, 10, 1610-1644 (2006) · Zbl 1195.34003
[48] Lipatov, A. V., Stability of continuous systems with one nonlinearity, Dokl. Akad. Nauk SSSR, 267, 1069-1072 (1981)
[49] Mancera, R.; Safonov, M. G., All stability multipliers for repeated MIMO nonlinearities, Syst. Control Lett., 54, 4, 389-397 (2005) · Zbl 1129.93474
[50] Manchester, I. R.; Slotine, J.-J. E., Transverse contraction criteria for existence, stability, and robustness of a limit cycle, Syst. Control Lett., 63, 32-38 (2014) · Zbl 1283.93142
[51] Materassi, D.; Salapaka, M., A generalized Zames-Falb multiplier, IEEE Trans. Autom. Control, 56, 6, 1432-1436 (2011) · Zbl 1368.93521
[54] Megretski, A.; Rantzer, A., System analysis via integral quadratic constraints, IEEE Trans. Autom. Control, 42, 6, 819-830 (1997) · Zbl 0881.93062
[55] Morales, R.; Li, G.; Heath, W., Anti-windup and the preservation of robustness against structured norm-bounded uncertainty, Int. J. Robust Nonlinear Control, 24, 17, 2640-2652 (2014) · Zbl 1305.93162
[57] Moreno, J. C.; Baños, A. B.; Berenguel, M., A QFT framework for antiwindup control systems design, J. Dyn. Syst. Meas. Control, 132, 2, 021012 (2010)
[59] O׳Shea, R., A combined frequency-time domain stability criterion for autonomous continuous systems, IEEE Trans. Autom. Control, 11, 3, 477-484 (1966)
[60] O׳Shea, R., An improved frequency time domain stability criterion for autonomous continuous systems, IEEE Trans. Autom. Control, 12, 6, 725-731 (1967)
[61] O׳Shea, R.; Younis, M., A frequency-time domain stability criterion for sampled-data systems, IEEE Trans. Autom. Control, 12, 6, 719-724 (1967)
[62] Park, P., Stability criteria of sector- and slope-restricted Lur׳e systems, IEEE Trans. Autom. Control, 47, 2, 308-313 (2002) · Zbl 1364.93615
[63] Rantzer, A., On the Kalman-Yakubovich-Popov lemma, Syst. Control Lett., 28, 1, 7-10 (1996) · Zbl 0866.93052
[64] Rantzer, A., Friction analysis based on integral quadratic constraints, Int. J. Robust Nonlinear Control, 11, 7, 645-652 (2001) · Zbl 1073.93528
[65] Safonov, M.; Wyetzner, G., Computer-aided stability analysis renders Popov criterion obsolete, IEEE Trans. Autom. Control, 32, 12, 1128-1131 (1987) · Zbl 0636.93060
[66] Safonov, M. G.; Kulkarni, V. V., Zames-Falb multipliers for MIMO nonlinearities, Int. J. Robust Nonlinear Control, 10, 11-12, 1025-1038 (2000) · Zbl 0979.93102
[67] Scherer, C.; Gahinet, P.; Chilali, M., Multiobjective output-feedback control via LMI optimization, IEEE Trans. Autom. Control, 42, 7, 896-911 (1997) · Zbl 0883.93024
[68] Seiler, P., Stability analysis with dissipation inequalities and integral quadratic constraints, IEEE Trans. Autom. Control, 60, 6, 1704-1709 (2015) · Zbl 1360.93523
[71] Turner, M. C.; Kerr, M. L., \(L_2\) gain bounds for systems with sector bounded and slope-restricted nonlinearities, Int. J. Robust Nonlinear Control, 22, 13, 1505-1521 (2011) · Zbl 1287.93032
[72] Turner, M.; Kerr, M. L.; Sofrony, J., Tractable stability analysis for systems containing repeated scalar slope-restricted nonlinearities, Int. J. Robust Nonlinear Control, 25, 7, 971-986 (2015) · Zbl 1312.93085
[73] Turner, M.; Herrmann, G.; Postlethwaite, I., Incorporating robustness requirements into antiwindup design, IEEE Trans. Autom. Control, 52, 10, 1842-1855 (2007) · Zbl 1366.93310
[74] Turner, M. C.; Kerr, M. L.; Postlethwaite, I., On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities, IEEE Trans. Autom. Control, 54, 11, 2697-2702 (2009) · Zbl 1367.93543
[76] Turner, M.; Kerr, M. L.; Postlethwaite, I., Authors reply to “Comments on ‘On the existence of stable, causal multipliers for systems with slope-restricted nonlinearities”’, IEEE Trans. Autom. Control, 57, 9, 2428-2430 (2012) · Zbl 1369.93508
[78] Veenman, J.; Scherer, C. W., IQC-synthesis with general dynamic multipliers, Int. J. Robust Nonlinear Control, 24, 17, 3027-3056 (2014) · Zbl 1305.93074
[83] Willems, J. C., Dissipative dynamical systems. Part I: general theory, Arch. Ration. Mech. Anal., 45, 321-351 (1972) · Zbl 0252.93002
[84] Willems, J. C.; Brockett, R., Some new rearrangement inequalities having application in stability analysis, IEEE Trans. Autom. Control, 13, 5, 539-549 (1968)
[85] Willems, J. C.; Gruber, M.; O׳Shea, R., Comments on “A combined frequency-time domain stability criterion for autonomous continuous systems”, IEEE Trans. Autom. Control, 12, 2, 217-219 (1967)
[86] Willems, J. C.; Takaba, K., Dissipativity and stability of interconnections, Int. J. Robust Nonlinear Control, 17, 5-6, 563-586 (2007) · Zbl 1113.93083
[87] Yakubovich, V., Frequency conditions for the absolute stability and dissipativity of control systems with a single differentiable nonlinearity, Sov. Math. Dokl., 6, 98-101 (1965) · Zbl 0142.36301
[88] Zames, G.; Falb, P., On the stability of systems with monotone and odd monotone nonlinearities, IEEE Trans. Autom.Control, 12, 2, 221-223 (1967) · Zbl 0262.93031
[89] Zames, G.; Falb, P. L., Stability conditions for systems with monotone and slope-restricted nonlinearities, SIAM J. Control, 6, 1, 89-108 (1968) · Zbl 0157.15801
[90] Zheng, A.; Kothare, M. V.; Morari, M., Anti-windup design for internal model control, Int. J. Control, 60, 5, 1015-1024 (1994) · Zbl 0825.93283
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.