×

Existence and global attractivity of positive periodic solutions for the neutral multidelay logarithmic population model with impulse. (English) Zbl 1335.92082

Summary: Suffiicient and realistic conditions are established in this paper for the existence and global attractivity of a positive periodic solution to the neutral multidelay logarithmic population model with impulse by using the theory of abstract continuous theorem of \(k\)-set contractive operator and some inequality techniques. The results improve and generalize the known ones in [Y. Li, J. Syst. Sci. Math. Sci. 19, No. 1, 34–38 (1999; Zbl 0953.92025); S. Lu and W. Ge, J. Comput. Appl. Math. 166, No. 2, 371–383 (2004; Zbl 1061.34053); the first and third authors, Appl. Math. Comput. 216, No. 4, 1310–1315 (2010; Zbl 1303.92101)], and [Q. Wang et al., Appl. Math. Comput. 213, No. 1, 137–147 (2009; Zbl 1177.34093)]. As an application, we also give an example to illustrate the feasibility of our main results.

MSC:

92D25 Population dynamics (general)
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Mathematics and Its Applications 74 (1992)
[2] Mathematical Biosciences 82 (2) pp 165– (1986) · Zbl 0607.92022 · doi:10.1016/0025-5564(86)90136-7
[3] Applied Mathematics 12 (3) pp 279– (1997) · Zbl 0947.00003
[4] Journal of Systems Science and Complexity 19 (1) pp 34– (1999)
[5] DOI: 10.1016/j.cam.2003.08.033 · Zbl 1061.34053 · doi:10.1016/j.cam.2003.08.033
[6] DOI: 10.1016/j.amc.2010.02.024 · Zbl 1303.92101 · doi:10.1016/j.amc.2010.02.024
[7] DOI: 10.1016/j.amc.2009.03.028 · Zbl 1177.34093 · doi:10.1016/j.amc.2009.03.028
[8] DOI: 10.1006/jmaa.2000.7340 · Zbl 0995.34073 · doi:10.1006/jmaa.2000.7340
[9] DOI: 10.1016/S0096-3003(03)00685-4 · Zbl 1042.92026 · doi:10.1016/S0096-3003(03)00685-4
[10] DOI: 10.1016/S0096-3003(03)00170-X · Zbl 1045.92037 · doi:10.1016/S0096-3003(03)00170-X
[11] DOI: 10.1016/j.camwa.2004.07.009 · Zbl 1070.34109 · doi:10.1016/j.camwa.2004.07.009
[12] DOI: 10.1016/j.cam.2004.10.001 · Zbl 1061.92058 · doi:10.1016/j.cam.2004.10.001
[13] DOI: 10.1006/jmaa.1998.6093 · Zbl 0917.34060 · doi:10.1006/jmaa.1998.6093
[14] DOI: 10.1016/S0362-546X(99)00445-9 · Zbl 0986.34063 · doi:10.1016/S0362-546X(99)00445-9
[15] DOI: 10.1016/j.nonrwa.2005.07.002 · Zbl 1121.34075 · doi:10.1016/j.nonrwa.2005.07.002
[16] DOI: 10.1016/j.na.2007.10.033 · Zbl 1166.34047 · doi:10.1016/j.na.2007.10.033
[17] DOI: 10.1016/j.na.2007.04.009 · Zbl 1152.34053 · doi:10.1016/j.na.2007.04.009
[18] DOI: 10.1016/j.chaos.2007.06.071 · Zbl 1197.34158 · doi:10.1016/j.chaos.2007.06.071
[19] DOI: 10.1016/j.cam.2009.12.019 · Zbl 1196.34095 · doi:10.1016/j.cam.2009.12.019
[20] 2 (2006)
[21] (1993)
[22] (1995)
[23] (2001)
[24] Nonlinear Analysis 6 (9) pp 943– (1982) · Zbl 0525.34015 · doi:10.1016/0362-546X(82)90013-X
[25] DOI: 10.1006/jmaa.1997.5669 · Zbl 0892.34040 · doi:10.1006/jmaa.1997.5669
[26] DOI: 10.1016/j.cam.2006.03.002 · Zbl 1115.34067 · doi:10.1016/j.cam.2006.03.002
[27] DOI: 10.1016/j.mcm.2008.09.008 · Zbl 1171.34341 · doi:10.1016/j.mcm.2008.09.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.