×

Four-state quantum key distribution exploiting maximum mutual information measurement strategy. (English) Zbl 1333.81115

Summary: We propose a four-state quantum key distribution (QKD) scheme using generalized measurement of nonorthogonal states, the maximum mutual information measurement strategy. Then, we analyze the eavesdropping process in intercept-resend and photon number splitting attack scenes. Our analysis shows that in the intercept-resend and photon number splitting attack eavesdropping scenes, our scheme is more secure than BB84 protocol and has higher key generation rate which may be applied to high-density QKD.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI

References:

[1] Bennett, C., Brassard G. (eds.): In: Proceedings of IEEE International Conference on Computers. IEEE, New York (1984)
[2] Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301-1350 (2009) · doi:10.1103/RevModPhys.81.1301
[3] Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[4] Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012) · doi:10.1103/PhysRevLett.108.130503
[5] Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121-3124 (1992) · Zbl 0969.94501 · doi:10.1103/PhysRevLett.68.3121
[6] Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85(15), 3313-3316 (2000) · Zbl 1369.81026 · doi:10.1103/PhysRevLett.85.3313
[7] Phoenix, S.J.D., Barnett, S.M., Chefles, A.: Three-state quantum cryptography. J. Mod. Opt. 47(2-3), 507-516 (2000) · doi:10.1080/09500340008244056
[8] Li, Z., Zhang, Y.-C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052301 (2014) · doi:10.1103/PhysRevA.89.052301
[9] Marshall, K., Weedbrook, C.: Device-independent quantum cryptography for continuous variables. Phys. Rev. A 90, 042311 (2014) · doi:10.1103/PhysRevA.90.042311
[10] Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002) · doi:10.1103/PhysRevLett.88.057902
[11] Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004) · doi:10.1103/PhysRevLett.92.057901
[12] Li, Y., Bao, W.-S., Li, H.-W., Zhou, C., Wang, Y.: Passive decoy-state quantum key distribution using weak coherent pulses with intensity fluctuations. Phys. Rev. A 89(3), 032329 (2014) · doi:10.1103/PhysRevA.89.032329
[13] Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014) · doi:10.1103/PhysRevA.89.052333
[14] Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003) · doi:10.1103/PhysRevLett.91.057901
[15] Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005) · doi:10.1103/PhysRevLett.94.230503
[16] Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005) · doi:10.1103/PhysRevLett.94.230504
[17] Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005) · doi:10.1103/PhysRevA.72.012326
[18] Zhang, P., Aungskunsiri, K., Martín-López, E., Wabnig, J., Lobino, M., Nock, R.W., Munns, J., Bonneau, D., Jiang, P., Li, H.W., Laing, A., Rarity, J.G., Niskanen, A.O., Thompson, M.G., O’Brien, J.L.: J. Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett. 112, 130501 (2014) · doi:10.1103/PhysRevLett.112.130501
[19] Laing, A., Scarani, V., Rarity, J.G., O’Brien, J.L.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 012304 (2010) · doi:10.1103/PhysRevA.82.012304
[20] Wabnig, J., Bitauld, D., Li, H., Laing, A., O’Brien, J., Niskanen, A.: Demonstration of free-space reference frame independent quantum key distribution. New J. Phys. 15(7), 073001 (2013) · doi:10.1088/1367-2630/15/7/073001
[21] Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145-195 (2002) · Zbl 1371.81006 · doi:10.1103/RevModPhys.74.145
[22] Sasaki, M., Hirota, O.: Optimum decision scheme with a unitary control process for binary quantum-state signals. Phys. Rev. A 54, 2728-2736 (1996) · doi:10.1103/PhysRevA.54.2728
[23] Lu, Y., Coish, N., Kaltenbaek, R., Hamel, D.R., Croke, S., Resch, K.J.: Minimum-error discrimination of entangled quantum states. Phys. Rev. A 82(4), 042340 (2010) · doi:10.1103/PhysRevA.82.042340
[24] Huttner, B., Muller, A., Gautier, J.D., Zbinden, H., Gisin, N.: Unambiguous quantum measurement of nonorthogonal states. Phys. Rev. A 54(5), 3783-3789 (1996) · doi:10.1103/PhysRevA.54.3783
[25] Dusek, M., Jahma, M., Lutkenhaus, N.: Unambiguous state discrimination in quantum cryptography with weak coherent states. Phys. Rev. A 62(2), 022306 (2000) · doi:10.1103/PhysRevA.62.022306
[26] Clarke, R., Chefles, A., Barnett, S., Riis, E.: Experimental demonstration of optimal unambiguous state discrimination. Phys. Rev. A 63(4), 040305 (2001) · doi:10.1103/PhysRevA.63.040305
[27] Croke, S., Andersson, E., Barnett, S.M., Gilson, C.R., Jeffers, J.: Maximum confidence quantum measurements. Phys. Rev. Lett. 96, 070401 (2006) · doi:10.1103/PhysRevLett.96.070401
[28] Jiménez, O., Solís-Prosser, M.A., Delgado, A., Neves, L.: Maximum-confidence discrimination among symmetric qudit states. Phys. Rev. A 84, 062315 (2011) · doi:10.1103/PhysRevA.84.062315
[29] Croke, S., Mosley, P., Barnett, S., Walmsley, I.: Maximum confidence measurements and their optical implementation. Eur. Phys. J. D 41(3), 589-598 (2007) · doi:10.1140/epjd/e2006-00265-1
[30] Clarke, R., Kendon, V., Chefles, A., Barnett, S., Riis, E., Sasaki, M.: Experimental realization of optimal detection strategies for overcomplete states. Phys. Rev. A 64(1), 012303 (2001) · doi:10.1103/PhysRevA.64.012303
[31] Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51(3), 1863-1869 (1995) · doi:10.1103/PhysRevA.51.1863
[32] Sasaki, M., Barnett, S.M., Jozsa, R., Osaki, M., Hirota, O.: Accessible information and optimal strategies for real symmetrical quantum sources. Phys. Rev. A 59, 3325-3335 (1999) · doi:10.1103/PhysRevA.59.3325
[33] Yuen, H.P., Kennedy, R.S., Lax, M.: Optimum testing of multiple hypotheses in quantum detection theory. IEEE Trans. Inform. Theory 21(2), 125-134 (1975) · Zbl 0301.94001 · doi:10.1109/TIT.1975.1055351
[34] Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36(6), 1269-1288 (1997) · Zbl 1053.81506 · doi:10.1007/BF02435921
[35] Grazioso, F., Grosshans, F.: Quantum-key-distribution protocols without sifting that are resistant to photon-number-splitting attacks. Phys. Rev. A 88, 052302 (2013) · doi:10.1103/PhysRevA.88.052302
[36] Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330-1333 (2000) · doi:10.1103/PhysRevLett.85.1330
[37] Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000) · doi:10.1103/PhysRevA.61.052304
[38] Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1(2), 238 (2009) · doi:10.1364/AOP.1.000238
[39] Franke-Arnold, S., Jeffers, J.: Unambiguous state discrimination in high dimensions. Eur. Phys. J. D 66(7), 1-4 (2012) · doi:10.1140/epjd/e2012-30027-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.