×

Tunable interaction of superconducting flux qubits in circuit QED. (English) Zbl 1333.81109

Summary: We propose to implement tunable interaction of superconducting flux qubits with cavity-assisted interaction and strong driving. The qubits have a three-level Lambda configuration, and the decay of the excited state will be greatly suppressed due to the effective large detuning. The implemented interaction is insensitive to the cavity field state and can be controlled by modulating the phase difference of the driving fields of the qubits. In particular, our scheme is based on the typical circuit QED setup and thus will provide a simple method towards the tunable interaction of superconducting qubits. Finally, we consider the generation of two and four qubits entangled states with the constructed interaction under the influence of typical decoherence effects.

MSC:

81P68 Quantum computation
81V80 Quantum optics
82D55 Statistical mechanics of superconductors

References:

[1] Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357-400 (2001) · doi:10.1103/RevModPhys.73.357
[2] You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42-47 (2005) · doi:10.1063/1.2155757
[3] Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031-1042 (2008) · doi:10.1038/nature07128
[4] You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589-597 (2011) · doi:10.1038/nature10122
[5] You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003) · doi:10.1103/PhysRevB.68.064509
[6] Zhu, S.-L., Wang, Z.D., Yang, K.: Quantum-information processing using Josephson junctions coupled through cavities. Phys. Rev. A 68, 034303 (2003) · doi:10.1103/PhysRevA.68.034303
[7] Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004) · doi:10.1103/PhysRevA.69.062320
[8] Wallraff, A., et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162-167 (2004) · doi:10.1038/nature02851
[9] Liu, Y.-X., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006) · doi:10.1103/PhysRevA.74.052321
[10] Ashhab, S., et al.: Interqubit coupling mediated by a high-excitation-energy quantum object. Phys. Rev. B 77, 014510 (2008) · doi:10.1103/PhysRevB.77.014510
[11] Ashhab, S., Nori, F.: Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010) · doi:10.1103/PhysRevA.81.042311
[12] Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339, 1169-1174 (2013) · doi:10.1126/science.1231930
[13] Lang, C., Eichler, C., Steffen, L., Fink, J.M., Woolley, M.J., Blais, A., Wallraff, A.: Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies. Nat. Phys. 9, 345-348 (2013) · doi:10.1038/nphys2612
[14] Liu, Y.-X., Wei, L.F., Tsai, J.S., Nori, F.: Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006) · doi:10.1103/PhysRevLett.96.067003
[15] Grajcar, M., Liu, Y.-X., Nori, F., Zagoskin, A.M.: Switchable resonant coupling of flux qubits. Phys. Rev. B 74, 172505 (2006) · doi:10.1103/PhysRevB.74.172505
[16] Ashhab, S., Matsuo, S., Hatakenaka, N., Nori, F.: Generalized switchable coupling for superconducting qubits using double resonance. Phys. Rev. B 74, 184504 (2006) · doi:10.1103/PhysRevB.74.184504
[17] Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153-185 (2014) · doi:10.1103/RevModPhys.86.153
[18] Majer, J., et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443-447 (2007) · doi:10.1038/nature06184
[19] van Loo, A.F., Fedorov, A., Lalumière, K., Sanders, B.C., Blais, A., Wallraff, A.: Photon-mediated interactions between distant artificial atoms. Science 342, 1494-1496 (2013) · doi:10.1126/science.1244324
[20] Allman, M.S., et al.: rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. Phys. Rev. Lett. 104, 177004 (2010) · doi:10.1103/PhysRevLett.104.177004
[21] Peropadre, B., Forn-Díaz, P., Solano, E., García-Ripoll, J.J.: Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. 105, 023601 (2010) · doi:10.1103/PhysRevLett.105.023601
[22] Srinivasan, S.J., Hoffman, A.J., Gambetta, J.M., Houck, A.A.: Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. Phys. Rev. Lett. 106, 083601 (2011) · doi:10.1103/PhysRevLett.106.083601
[23] Hoffman, A.J., Srinivasan, S.J., Gambetta, J.M., Houck, A.A.: Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling. Phys. Rev. B 84, 184515 (2011) · doi:10.1103/PhysRevB.84.184515
[24] Gustavsson, S., et al.: Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator. Phys. Rev. Lett. 108, 170503 (2012) · doi:10.1103/PhysRevLett.108.170503
[25] Allman, M.S., et al.: Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys. Rev. Lett. 112, 123601 (2014) · doi:10.1103/PhysRevLett.112.123601
[26] Whittaker, J.D., et al.: Tunable-cavity QED with phase qubits. Phys. Rev. B 90, 024513 (2014) · doi:10.1103/PhysRevB.90.024513
[27] Liu, Y.-X., You, J.Q., Wei, L.F., Sun, C.P., Nori, F.: Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. 95, 087001 (2005) · doi:10.1103/PhysRevLett.95.087001
[28] Deppe, F., et al.: Two-photon probe of the Jaynes-Cummings model and controlled symmetry breaking in circuit QED. Nat. Phys. 4, 686-691 (2008) · doi:10.1038/nphys1016
[29] Liu, Y.-X., Yang, C.-X., Sun, H.-C., Wang, X.-B.: Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields. New J. Phys. 16, 015031 (2014) · doi:10.1088/1367-2630/16/1/015031
[30] Solano, E., de Matos Filho, R.L., Zagury, N.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003) · doi:10.1103/PhysRevLett.90.027903
[31] Zheng, S.-B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66, 060303 (2002) · doi:10.1103/PhysRevA.66.060303
[32] Zhu, S.-L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005) · doi:10.1103/PhysRevLett.94.100502
[33] Xue, Z.-Y., Shao, L.B., Hu, Y., Zhu, S.-L., Wang, Z.D.: Tunable interfaces for realizing universal quantum computation with topological qubits. Phys. Rev. A 88, 024303 (2013) · doi:10.1103/PhysRevA.88.024303
[34] Xue, Z.-Y.: Fast geometric gate operation of superconducting charge qubits in circuit QED. Quantum Inf. Process. 11, 1381-1388 (2012) · Zbl 1263.81125 · doi:10.1007/s11128-011-0285-3
[35] Xue, Z.-Y., Wang, Z.D.: Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity. Phys. Rev. A 75, 064303 (2007) · doi:10.1103/PhysRevA.75.064303
[36] Zhan, Z.-M., Li, J.-H., Li, W.-B.: Generation of entangled states of multiple superconducting quantum interference devices in cavity. Commun. Theor. Phys. 45, 709 (2006) · doi:10.1088/0253-6102/45/4/027
[37] Feng, Z.-B.: Coupling charge qubits via Raman transitions in circuit QED. Phys. Rev. A 78, 032325 (2008) · doi:10.1103/PhysRevA.78.032325
[38] Chen, L.-B., Yang, W.: All-optical controlled phase gate in quantum dot molecules. Laser Phys. Lett. 11, 105201 (2014) · doi:10.1088/1612-2011/11/10/105201
[39] Wang, H.-F., Zhu, A.-D., Zhang, S.: Physical optimization of quantum error correction circuits with spatially separated quantum dot spins. Opt. Express 21, 12484-12494 (2013) · doi:10.1364/OE.21.012484
[40] Zhu, S.-L., Wang, Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003) · doi:10.1103/PhysRevLett.91.187902
[41] Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835-1838 (1999) · doi:10.1103/PhysRevLett.82.1835
[42] Xue, Z.-Y., Gong, M., Liu, J., Hu, Y., Zhu, S.-L., Wang, Z.D.: Robust interface between flying and topological qubits. Sci. Rep. 5, 12233 (2015) · doi:10.1038/srep12233
[43] Hartmann, M.J., Brandão, F.G.S.L., Plenio, M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photonics Rev. 2, 527-556 (2008) · doi:10.1002/lpor.200810046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.