×

Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a Green’s function-based root locus approach. (English) Zbl 1333.81209

Summary: In this paper, we develop a Green’s function-based root locus approach to realizing a Lorentzian-noise-disturbed non-Markovian quantum system by Markovian coupled oscillators in an extended Hilbert space. By using a Green’s function-based root locus method, we design an ancillary oscillator for Markovian coupled oscillators to be a Lorentzian noise generator. Thus a principal oscillator coupled to the ancillary oscillator via a direct interaction can capture the dynamics of a Lorentzian-noise-disturbed non-Markovian quantum system. By matching the root locus in the frequency domain, conditions for the realization are obtained and a critical transition in the non-Markovian quantum system can also be observed in the Markovian coupled oscillators.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
35J08 Green’s functions for elliptic equations
Full Text: DOI

References:

[1] Divincenzo, D.P.: Quantum computation. Science 270(5234), 255-261 (1995) · Zbl 1226.68037 · doi:10.1126/science.270.5234.255
[2] Altafini, C., Ticozzi, F.: Modeling and control of quantum systems: an introduction. IEEE Trans. Autom. Control 57(8), 1898-1917 (2012) · Zbl 1369.81040 · doi:10.1109/TAC.2012.2195830
[3] Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002) · Zbl 1053.81001
[4] Leggett, A.J., Chakravarty, S., Dorsey, A.T., Matthew, P.A., Fisher, Anupam Garg, Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1-85 (1987) · doi:10.1103/RevModPhys.59.1
[5] Tan, H.T., Zhang, W.M.: Non-Markovian dynamics of an open quantum system with initial system-reservoir correlations: A nanocavity coupled to a coupled-resonator optical waveguide. Phys. Rev. A 83(3), 032102 (2011) · doi:10.1103/PhysRevA.83.032102
[6] Xue, S., Wu, R.B., Zhang, W.M., Zhang, J., Li, C.W., Tarn, T.J.: Decoherence suppression via non-Markovian coherent feedback control. Phys. Rev. A 86, 052304 (2012) · doi:10.1103/PhysRevA.86.052304
[7] Hänggi, P., Jung, P.: Colored noise in dynamical systems. Adv. Chem. Phys. 89, 239-326 (1995)
[8] Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, Hoboken, NJ (1972) · Zbl 0276.93001
[9] Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice. PrenticeHall, Englewood Cliffs (1993) · Zbl 0848.93002
[10] Xue, S., James, M.R., Shabani, A., Ugrinovskii, V., Petersen, I.R.: Quantum filter for a class of non-Markovian quantum systems. arXiv:1503.07999 (2015) · Zbl 0998.81555
[11] Imamoḡlu, A.: Stochastic wave-function approach to non-Markovian systems. Phys. Rev. A 50, 3650-3653 (1994) · doi:10.1103/PhysRevA.50.3650
[12] Budini, A.A.: Embedding non-markovian quantum collisional models into bipartite Markovian dynamics. Phys. Rev. A 88, 032115 (2013) · doi:10.1103/PhysRevA.88.032115
[13] Shabani, A., Roden, J., Whaley, K.B.: Continuous measurement of a non-Markovian open quantum system. Phys. Rev. Lett. 112, 113601 (2014) · doi:10.1103/PhysRevLett.112.113601
[14] Tu, M.W.Y., Zhang, W.M.: Non-Markovian decoherence theory for a double-dot charge qubit. Phys. Rev. B 78(23), 235311 (2008) · doi:10.1103/PhysRevB.78.235311
[15] Xue, S., Wu, R.B., Tarn, T.-J., Petersen, I.R.: Witnessing the boundary between Markovian and non-Markovian quantum dynamics: a Green’s function approach. Quantum Inf. Process. 14(7), 2657-2672 (2015) · Zbl 1327.81249 · doi:10.1007/s11128-015-1000-6
[16] Xue, S., Zhang, J., Wu, R.B., Li, C.W., Tarn, T.J.: Quantum operation for a one-qubit system under a non-Markovian environment. J. Phys. B At. Mol. Phys. 44(15), 154016 (2011) · doi:10.1088/0953-4075/44/15/154016
[17] Lei, C.U., Zhang, W.M.: A quantum photonic dissipative transport theory. Ann. Phys. 327(5), 1408-1433 (2012) · Zbl 1254.82048 · doi:10.1016/j.aop.2012.02.005
[18] Gardiner, C., Zoller, P.: Quantum Noise. Springer, Berlin (2000) · Zbl 0998.81555 · doi:10.1007/978-3-662-04103-1
[19] Ogata, K.: Modern Control Engineering. PrenticeHall, Englewood Cliffs (1996) · Zbl 0756.93060
[20] Doherty, A.C., Jacobs, K.: Feedback control of quantum systems using continuous state estimation. Phys. Rev. A 60, 2700-2711 (1999) · doi:10.1103/PhysRevA.60.2700
[21] Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009) · doi:10.1103/PhysRevLett.103.210401
[22] Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7(12), 931-934 (2011) · doi:10.1038/nphys2085
[23] Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Çakmak, B., Aguilar, G.H., Walborn, S.P., Souto Ribeiro, P.H.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014) · doi:10.1103/PhysRevA.90.052118
[24] Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Jiménez, O., Farías, S.P., Walborn, P.H., Ribeiro, Souto, de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014) · doi:10.1103/PhysRevLett.112.210402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.