×

Generation of singlet states with Rydberg blockade mechanism and driven by adiabatic passage. (English) Zbl 1333.81090

Summary: A single state is a special state that entangles multi-state quantum systems and plays a significant role in the field of quantum computation. In this paper, we propose a scheme to realize the generation of single states for Rydberg atoms, where one Rydberg atom is trapped in an optical potential and the others are trapped in an adjacent optical potential. Moreover, combining Rydberg blockade and adiabatic-passage technologies, an \(N\)-atom singlet state can be generated with the interaction of an \(N\)-dimensional Rydberg atom and an \((N-1)\)-atom singlet state. Compared to previous schemes, the advantage of our proposal is that an \(N\)-particle \(N\)-level singlet state with \(N\geq 3\) may be realized more simply.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81V80 Quantum optics
Full Text: DOI

References:

[1] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2011) · Zbl 1288.81001
[2] Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000) · doi:10.1103/PhysRevLett.85.4418
[3] Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002) · doi:10.1103/PhysRevLett.88.127901
[4] Greentree, A.D., Schirmer, S.G., Green, F., Hollenberg, L.C.L., Hamilton, A.R., Clark, R.G.: Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004) · doi:10.1103/PhysRevLett.92.097901
[5] Cabello, A.: N-Particle N-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002) · Zbl 1267.81125 · doi:10.1103/PhysRevLett.89.100402
[6] Cabello, A.: Supersinglets. J. Mod. Opt. 50, 10049 (2003) · Zbl 1067.81521 · doi:10.1080/09500340308234551
[7] Jin, G.S., Li, S.S., Feng, L., Zheng, H.Z.: Generation of a supersinglet of three three-level atoms in cavity QED. Phys. Rev. A 71, 034307 (2005) · doi:10.1103/PhysRevA.71.034307
[8] Lin, G.W., Ye, M.Y., Chen, L.B., Du, Q.H., Lin, X.M.: Generation of the singlet state for three atoms in cavity QED. Phys. Rev. A 76, 014308 (2007) · doi:10.1103/PhysRevA.76.014308
[9] Huang, X.H., Lin, G.W., Ye, M.Y., Tang, Y.X., Lin, X.M.: Realization of a singlet state via adiabatic evolution of dark eigenstates. Opt. Commun. 281, 4545 (2008) · doi:10.1016/j.optcom.2008.04.071
[10] Yang, R.C., Lin, X., Huang, Z.P., Li, H.C.: A singlet state prepared with resonant interaction via trapped ions. Opt. Commun. 282, 1952 (2009) · doi:10.1016/j.optcom.2009.01.045
[11] Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.W.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J. Phys. 12, 023040 (2010) · doi:10.1088/1367-2630/12/2/023040
[12] Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three-atom singlet states via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012) · doi:10.1103/PhysRevA.85.042308
[13] Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411 (2013) · Zbl 1263.81052 · doi:10.1007/s11128-012-0382-y
[14] Shao, X.Q., You, J.B., Zheng, T.Y., Oh, C.H., Zhang, S.: Stationary three-dimensional entanglement via dissipative Rydberg pumping. Phys. Rev. A 89, 052313 (2014) · doi:10.1103/PhysRevA.89.052313
[15] Yang, R.C., Lin, X., Lin, X.M.: Generation of three-qutrit singlet states for three atoms trapped in separated cavities. Opt. Commun. 338, 366 (2015) · doi:10.1016/j.optcom.2014.10.069
[16] Yang R. C., Ye L. X., Lin X., Chen X., Liu H. Y.: Generation of three-qutrit singlet states with trapped ions via adiabatic passage. Quantum Inf. Process. doi:10.1007/s11128-015-1130-x · Zbl 1333.81053
[17] Møller, D., Madsen, L.B., Mølmer, K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008) · doi:10.1103/PhysRevLett.100.170504
[18] Gaëtan, A., Miroshnychenko, Y., Wilk, T., Chotia, A., Viteau, M., Comparat, D., Pillet, P., Browaeys, A., Grangier, P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009) · doi:10.1038/nphys1183
[19] Wilk, T., Gaëtan, A., Evellin, C., Wolters, J., Miroshnychenko, Y., Grangier, P., Browaeys, A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010) · Zbl 1240.37068 · doi:10.1103/PhysRevLett.104.010502
[20] Schauß, P., Cheneau, M., Endres, M., Fukuhara, T., Hild, S., Omran, A., Pohl, T., Gross, C., Kuhr, S., Bloch, I.: Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87 (2012) · doi:10.1038/nature11596
[21] Urban, E., Johnson, T.A., Henage, T., Isenhower, L., Yavuz, D.D., Walker, T.G., Saffman, M.: Observation of Rydberg blockade between two atoms-experiment. Nat. Phys. 5, 110 (2009) · doi:10.1038/nphys1178
[22] Comparat, D., Pillet, P.: Dipole blockade in a cold Rydberg atomic sample. J. Opt. Soc. Am. B 27, A208 (2010) · doi:10.1364/JOSAB.27.00A208
[23] Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010) · doi:10.1103/RevModPhys.82.2313
[24] Löw, R., Weimer, H., Nipper, J., Balewski, J.B., Butscher, B., Büchler, H.P., Pfau, T.: An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B: At. Mol. Opt. Phys. 45, 113001 (2012) · doi:10.1088/0953-4075/45/11/113001
[25] Jaksch, D., Cirac, J.I., Zoller, P., Rolston, S.L., Côté, R., Lukin, M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000) · doi:10.1103/PhysRevLett.85.2208
[26] Lukin, M.D., Fleischhauer, M., Côté, R., Duan, L.M., Jaksch, D., Cirac, J.I., Zoller, P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001) · doi:10.1103/PhysRevLett.87.037901
[27] Vitanov, N.V.: Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. Atom. Mol. Opt. Phys. 46, 55 (2001) · doi:10.1016/S1049-250X(01)80063-X
[28] Chen, L.B., Yang, W.: All-optical controlled phase gate in quantum dot molecules. Laser Phys. Lett. 11, 105201 (2014) · doi:10.1088/1612-2011/11/10/105201
[29] Ivanov, P.A., Vitanov, N.V., Plenio, M.B.: Creation of cluster states of trapped ions by collective addressing. Phys. Rev. A 78, 012323 (2008) · doi:10.1103/PhysRevA.78.012323
[30] Torosov, B.T., Guérin, S., Vitanov, N.V.: High-fidelity adiabatic passage by composite sequences of chirped pulses. Phys. Rev. Lett. 106, 233001 (2011) · doi:10.1103/PhysRevLett.106.233001
[31] Sørensen, A.S., Altman, E., Gullans, M., Porto, J.V., Lukin, M.D., Demler, E.: Adiabatic preparation of many-body states in optical lattices. Phys. Rev. A 81, 061603 (2010) · doi:10.1103/PhysRevA.81.061603
[32] Müller, M., Lesanovsky, I., Weimer, H., Büchler, H.P., Zoller, P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009) · doi:10.1103/PhysRevLett.102.170502
[33] Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B: At. Mol. Opt. Phys. 32, 4535 (1999) · doi:10.1088/0953-4075/32/18/312
[34] Gallagher, T.F.: Rydberg Atoms. Cambridge University Press, Cambridge (1994) · doi:10.1017/CBO9780511524530
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.