×

Performance of two different quantum annealing correction codes. (English) Zbl 1333.81104

Summary: Quantum annealing is a promising approach for solving optimization problems, but like all other quantum information processing methods, it requires error correction to ensure scalability. In this work, we experimentally compare two quantum annealing correction (QAC) codes in the setting of antiferromagnetic chains, using two different quantum annealing processors. The lower-temperature processor gives rise to higher success probabilities. The two codes differ in a number of interesting and important ways, but both require four physical qubits per encoded qubit. We find significant performance differences, which we explain in terms of the effective energy boost provided by the respective redundantly encoded logical operators of the two codes. The code with the higher energy boost results in improved performance, at the expense of a lower-degree encoded graph. Therefore, we find that there exists an important trade-off between encoded connectivity and performance for quantum annealing correction codes.

MSC:

81P68 Quantum computation
81P70 Quantum coding (general)
82D55 Statistical mechanics of superconductors
94B99 Theory of error-correcting codes and error-detecting codes

References:

[1] Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Hoi, I.C., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Vainsencher, A., Wenner, J., Cleland, A.N., Martinis, J.M.: State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519(7541), 66-69 (2015) · doi:10.1038/nature14270
[2] Corcoles, A.D., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6 (2015). doi:10.1038/ncomms7979
[3] Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073-1078 (1996) · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[4] Buluta, I., Nori, F.: Quantum simulators. Science 326(5949), 108-111 (2009) · doi:10.1126/science.1177838
[5] Barreiro, J.T., Muller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470(7335), 486-491 (2011) · doi:10.1038/nature09801
[6] Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5-6), 343-348 (1994). doi:10.1016/0009-2614(94)00117-0 · doi:10.1016/0009-2614(94)00117-0
[7] Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355-5363 (1998). doi:10.1103/PhysRevE.58.5355 · doi:10.1103/PhysRevE.58.5355
[8] Brooke, J., Bitko, D., Aeppli, G.: Quantum annealing of a disordered magnet. Science 284(5415), 779-781 (1999). doi:10.1126/science.284.5415.779 · doi:10.1126/science.284.5415.779
[9] Brooke, J., Rosenbaum, T.F., Aeppli, G.: Tunable quantum tunnelling of magnetic domain walls. Nature 413(6856), 610-613 (2001). doi:10.1038/35098037 · doi:10.1038/35098037
[10] Kaminsky, W.M., Lloyd, S.: Scalable architecture for adiabatic quantum computing of NP-hard problems. In: Leggett, A., Ruggiero, B., Silvestrini, P. (eds.) Quantum Computing and Quantum Bits in Mesoscopic Systems. Kluwer Academic Publishers (2004). arXiv:quant-ph/0211152
[11] Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin, S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nature 473(7346), 194-198 (2011). doi:10.1038/nature10012 · doi:10.1038/nature10012
[12] Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/0001106 · Zbl 1187.81063
[13] Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472-475 (2001). doi:10.1126/science.1057726 · Zbl 1226.81046 · doi:10.1126/science.1057726
[14] Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241-3253 (1982) · doi:10.1088/0305-4470/15/10/028
[15] Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435 (1950). doi:10.1143/JPSJ.5.435 · doi:10.1143/JPSJ.5.435
[16] Jansen, S., Ruskai, M.-B., Seiler, R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10), 10211 (2007). doi:10.1063/1.2798382 · Zbl 1152.81490 · doi:10.1063/1.2798382
[17] Lidar, D.A., Rezakhani, A.T., Hamma, A.: Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. J. Math. Phys. 50(10), 102106 (2009). doi:10.1063/1.3236685 · Zbl 1283.81035 · doi:10.1063/1.3236685
[18] Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65(1), 012322 (2001). doi:10.1103/PhysRevA.65.012322 · doi:10.1103/PhysRevA.65.012322
[19] Sarandy, M.S., Lidar, D.A.: Adiabatic quantum computation in open systems. Phys. Rev. Lett. 95(25), 250503 (2005). doi:10.1103/PhysRevLett.95.250503 · doi:10.1103/PhysRevLett.95.250503
[20] Aberg, J., Kult, D., Sjöqvist, E.: Quantum adiabatic search with decoherence in the instantaneous energy eigenbasis. Phys. Rev. A 72(4), 042317 (2005). doi:10.1103/PhysRevA.72.042317 · doi:10.1103/PhysRevA.72.042317
[21] Roland, J., Cerf, N.J.: Noise resistance of adiabatic quantum computation using random matrix theory. Phys. Rev. A 71, 032330 (2005). doi:10.1103/PhysRevA.71.032330 · Zbl 1227.81126 · doi:10.1103/PhysRevA.71.032330
[22] Amin, M.H.S., Averin, D.V., Nesteroff, J.A.: Decoherence in adiabatic quantum computation. Phys. Rev. A 79(2), 022107 (2009). doi:10.1103/PhysRevA.79.022107 · doi:10.1103/PhysRevA.79.022107
[23] Albash, T., Lidar, D.A.: Decoherence in adiabatic quantum computation. Phys. Rev. A 91(6), 062320 (2015). doi:10.1103/PhysRevA.91.062320 · doi:10.1103/PhysRevA.91.062320
[24] Young, K.C., Blume-Kohout, R., Lidar, D.A.: Adiabatic quantum optimization with the wrong Hamiltonian. Phys. Rev. A 88(6), 062314 (2013). doi:10.1103/PhysRevA.88.062314 · doi:10.1103/PhysRevA.88.062314
[25] Lidar, D., Brun, T. (eds.): Quantum Error Correction. Cambridge University Press, Cambridge (2013)
[26] Jordan, S.P., Farhi, E., Shor, P.W.: Error-correcting codes for adiabatic quantum computation. Phys. Rev. A 74(5), 052322 (2006). doi:10.1103/PhysRevA.74.052322 · doi:10.1103/PhysRevA.74.052322
[27] Lidar, D.A.: Towards fault tolerant adiabatic quantum computation. Phys. Rev. Lett. 100(16), 160506 (2008). doi:10.1103/PhysRevLett.100.160506 · doi:10.1103/PhysRevLett.100.160506
[28] Quiroz, G., Lidar, D.A.: High-fidelity adiabatic quantum computation via dynamical decoupling. Phys. Rev. A 86, 042333 (2012). doi:10.1103/PhysRevA.86.042333 · doi:10.1103/PhysRevA.86.042333
[29] Ganti, A., Onunkwo, U., Young, K.: Family of [[6k,2k,2]] codes for practical, scalable adiabatic quantum computation. Phys. Rev. A 89(4), 042313 (2014). doi:10.1103/PhysRevA.89.042313 · doi:10.1103/PhysRevA.89.042313
[30] Bookatz, A.D., Farhi, E., Zhou, L.: Error suppression in Hamiltonian-based quantum computation using energy penalties. Phys. Rev. A 92(2), 022317 (2015). doi:10.1103/PhysRevA.92.022317 · doi:10.1103/PhysRevA.92.022317
[31] Young, K.C., Sarovar, M., Blume-Kohout, R.: Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3(4), 041013 (2013). doi:10.1103/PhysRevX.3.041013 · doi:10.1103/PhysRevX.3.041013
[32] Sarovar, M., Young, K.C.: Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics. New J. Phys. 15(12), 125032 (2013). doi:10.1088/1367-2630/15/12/125032 · Zbl 1451.81182 · doi:10.1088/1367-2630/15/12/125032
[33] Marvian, I., Lidar, D.A.: Quantum error suppression with commuting Hamiltonians: two local is too local. Phys. Rev. Lett. 113(26), 260504 (2013). doi:10.1103/PhysRevLett.113.260504 · doi:10.1103/PhysRevLett.113.260504
[34] Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 097-165 (2006) · Zbl 1152.81671
[35] Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029), 39-44 (2005) · doi:10.1038/nature03350
[36] Mizel, A.: Fault-Tolerant, Universal Adiabatic Quantum Computation. arXiv:1403.7694
[37] Johnson, M.W., Bunyk, P., Maibaum, F., Tolkacheva, E., Berkley, A.J., Chapple, E.M., Harris, R., Johansson, J., Lanting, T., Perminov, I., Ladizinsky, E., Oh, T., Rose, G.: A scalable control system for a superconducting adiabatic quantum optimization processor. Supercond. Sci. Technol. 23(6), 065004 (2010). doi:10.1088/0953-2048/23/6/065004 · doi:10.1088/0953-2048/23/6/065004
[38] Berkley, A.J., Johnson, M.W., Bunyk, P., Harris, R., Johansson, J., Lanting, T., Ladizinsky, E., Tolkacheva, E., Amin, M.H.S., Rose, G.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23(10), 105014 (2010). doi:10.1088/0953-2048/23/10/105014 · doi:10.1088/0953-2048/23/10/105014
[39] Harris, R., Johnson, M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizinsky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S., Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready, B., Truncik, C.J.S., Rose, G.: Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010). doi:10.1103/PhysRevB.82.024511 · doi:10.1103/PhysRevB.82.024511
[40] Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. 5, 3243 (2014). doi:10.1038/ncomms4243 · doi:10.1038/ncomms4243
[41] Pudenz, K.L., Albash, T., Lidar, D.A.: Quantum annealing correction for random Ising problems. Phys. Rev. A 91(4), 042302 (2015). doi:10.1103/PhysRevA.91.042302 · doi:10.1103/PhysRevA.91.042302
[42] Vinci, W., Albash, T., Paz-Silva, G., Hen, I., Lidar, D.A.: Quantum annealing correction with minor embedding. Phys. Rev. A 92(4), 042310 (2015). doi:10.1103/PhysRevA.92.042310 · doi:10.1103/PhysRevA.92.042310
[43] Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014). doi:10.3389/fphy.2014.00005 · doi:10.3389/fphy.2014.00005
[44] Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., Martinis, J.M., Lidar, D.A., Troyer, M.: Defining and detecting quantum speedup. Science 345(6195), 420-424 (2014). doi:10.1126/science.1252319 · doi:10.1126/science.1252319
[45] Matsuura, S., Nishimori, H., Albash, T., Lidar, D. A.: Mean Field Analysis of Quantum Annealing Correction. arXiv:1510.07709
[46] Albash, T., Boixo, S., Lidar, D.A., Zanardi, P.: Quantum adiabatic Markovian master equations. New J. Phys. 14(12), 123016 (2012). doi:10.1088/1367-2630/14/12/123016 · Zbl 1448.81389 · doi:10.1088/1367-2630/14/12/123016
[47] Reed, M.D., Dicarlo, L., Nigg, S.E., Sun, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382-385 (2012). doi:10.1038/nature10786 · doi:10.1038/nature10786
[48] Amin, M.H.S., Love, P.J., Truncik, C.J.S.: Thermally assisted adiabatic quantum computation. Phys. Rev. Lett. 100, 060503 (2008). doi:10.1103/PhysRevLett.100.060503 · doi:10.1103/PhysRevLett.100.060503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.