×

Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. (English) Zbl 1333.81080

Summary: A theoretical scheme is proposed to implement bidirectional quantum controlled teleportation (BQCT) by using a nine-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary two-qubit state called qubits \(A_1\) and \(A_2\) to Bob; and at the same time, Bob may also transmit an arbitrary two-qubit state called qubits \(B_1\) and \(B_2\) to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional quantum controlled teleportation protocol works. And we show this bidirectional quantum controlled teleportation scheme may be determinate and secure. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we analytically derive the fidelities of the BQCT process and show that the fidelities in these two cases only depend on the amplitude parameter of the initial state and the decoherence noisy rate.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55-58 (2006) · Zbl 1187.81054 · doi:10.1016/j.physleta.2005.11.051
[3] Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005) · doi:10.1103/PhysRevA.72.022303
[4] Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377(19), 1337-1344 (2013) · Zbl 1292.81019 · doi:10.1016/j.physleta.2013.04.010
[5] Luo, M.-X., Yun, Deng, Chen, X.-B., Yang, Y.-X.: The faithful remote preparation of general quantum states. Quantum Inf. Process. 12(1), 279-294 (2013) · Zbl 1263.81083 · doi:10.1007/s11128-012-0374-y
[6] Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled Bidirectional Remote State Preparation in Noisy Environment: A Generalized View. arXiv:1409.0833 (2014) · Zbl 1325.81039
[7] Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13(7), 1639-1650 (2014) · Zbl 1303.81037 · doi:10.1007/s11128-014-0757-3
[8] Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223-3237 (2013) · Zbl 1286.81035 · doi:10.1007/s11128-013-0595-8
[9] Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14(1), 373-379 (2015) · Zbl 1311.81050 · doi:10.1007/s11128-014-0835-6
[10] Zhang, Z.-H., Shu, L., Mo, Z.-W., Zheng, J., Ma, S.-Y., Luo, M.-X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13(9), 1979-2005 (2014) · Zbl 1307.81023 · doi:10.1007/s11128-014-0790-2
[11] Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12(7), 2497-2507 (2013) · Zbl 1270.81050 · doi:10.1007/s11128-013-0537-5
[12] Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12(7), 2453-2464 (2013) · Zbl 1270.81043 · doi:10.1007/s11128-013-0533-9
[13] Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14(2), 739-753 (2015) · Zbl 1311.81094 · doi:10.1007/s11128-014-0866-z
[14] Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740-1744 (2013) · doi:10.1007/s10773-012-1208-5
[15] Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52(10), 3790-3796 (2013) · doi:10.1007/s10773-013-1684-2
[16] Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599-2616 (2015) · Zbl 1327.81171 · doi:10.1007/s11128-015-0987-z
[17] Thapliya, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. (2015). doi:10.1007/s11128-015-1124-8 · Zbl 1333.81128
[18] Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269-272 (2015) · Zbl 1315.81030 · doi:10.1007/s10773-014-2221-7
[19] Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52(11), 3870-3873 (2013) · Zbl 1282.81044 · doi:10.1007/s10773-013-1694-0
[20] Duan, Y.-J., Zha, X.-W., Sun, X.-M., Xia, J.-F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53(8), 2697-2707 (2014) · Zbl 1308.81045 · doi:10.1007/s10773-014-2065-1
[21] Fu, H.-Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840-1847 (2014) · Zbl 1298.81035 · doi:10.1007/s10773-013-1985-5
[22] Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835-3844 (2013) · Zbl 1303.81061 · doi:10.1007/s11128-013-0638-1
[23] Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quantum Inf. Process. 13(1), 59-70 (2014) · doi:10.1007/s11128-012-0487-3
[24] O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264-267 (2003) · doi:10.1038/nature02054
[25] Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39, 537-542 (2003) · doi:10.1088/0253-6102/39/5/537
[26] Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69(6), 064302 (2004) · doi:10.1103/PhysRevA.69.064302
[27] Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734-737 (2004) · doi:10.1038/nature02570
[28] Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575-579 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[29] Cerè, A., Lucamarini, M., Giuseppe, G.D., Tombesi, P.: Experimental test of two-way quantum key distribution in the presence of controlled noise. Phys. Rev. Lett. 96(20), 200501 (2006) · doi:10.1103/PhysRevLett.96.200501
[30] Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theor. Comput. Sci. 292(3), 575-588 (2003) · Zbl 1026.68121 · doi:10.1016/S0304-3975(01)00375-9
[31] Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum state sharing. J. Phys. B 41, 145506 (2008) · doi:10.1088/0953-4075/41/14/145506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.