×

Construction of quantum caps in projective space \(\mathrm{PG}(r,4)\) and quantum codes of distance 4. (English) Zbl 1333.81102

Summary: Constructions of quantum caps in projective space \(\mathrm{PG}(r,4)\) by recursive methods and computer search are discussed. For each even \(n\) satisfying \(n\geq 282\) and each odd \(z\) satisfying \(z\geq 275\), a quantum \(n\)-cap and a quantum \(z\)-cap in \(\mathrm{PG}(k-1,4)\) with suitable \(k\) are constructed, and \([[n,n-2k,4]]\) and \([[z,z-2k,4]]\) quantum codes are derived from the constructed quantum \(n\)-cap and \(z\)-cap, respectively. For \(n\geq 282\) and \(n\neq 286\), 756 and 5040, or \(z\geq 275\), the results on the sizes of quantum caps and quantum codes are new, and all the obtained quantum codes are optimal codes according to the quantum Hamming bound. While constructing quantum caps, we also obtain many large caps in \(\mathrm{PG}(r,4)\) for \(r\geq 11\). These results concerning large caps provide improved lower bounds on the maximal sizes of caps in \(\mathrm{PG}(r,4)\) for \(r\geq 11\).

MSC:

81P68 Quantum computation
68Q12 Quantum algorithms and complexity in the theory of computing
Full Text: DOI

References:

[1] Baker, R.D., Bonisoli, A., Cossidente, A., Ebert, G.L.: Mixed partitions of \[PG(5, q)\] PG(5,q). Discrete Math. 208(209), 23-29 (1999) · Zbl 0939.51004 · doi:10.1016/S0012-365X(99)00058-8
[2] Bartoli, D., Marcugini, S.: F. Pambianco.: new quantum caps in PG(4,4). J. Comb. Des. 20, 448-466 (2012). see also arXiv:0905.1059v2 · Zbl 1280.94118 · doi:10.1002/jcd.21321
[3] Bierbrauer, J., Bartoli, D., Faina, G., Marcugini, S., Pambianco, F., Edel, Y.: The structure of quaternary quantum caps. Des. Codes Cryptogr. 72, 733-747 (2014) · Zbl 1322.81024 · doi:10.1007/s10623-013-9796-5
[4] Bierbrauer, J.: Introduction to Coding Theory. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2005) · Zbl 1060.94001
[5] Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error-correction via codes over \[GF(4)\] GF(4). IEEE. Trans. Inf. Theory 44, 1369-1387 (1998) · Zbl 0982.94029 · doi:10.1109/18.681315
[6] Davydov, A., Faina, G., Marcugini, S., Pambianco, F.: On sizes of complete caps in projective spaces \[PG(n, q)\] PG(n,q) and arcs in planes \[PG(2, q)\] PG(2,q). J. Geom. 94, 31-58 (2009) · Zbl 1178.51009 · doi:10.1007/s00022-009-0009-3
[7] Edel, Y., Bierbrauer, J.: 41 is the largest size of a cap in \[PG(4,4)\] PG(4,4). Des. Codes Crypt. 16, 151-160 (1999) · Zbl 0935.51008 · doi:10.1023/A:1008389013117
[8] Edel, Y., Bierbrauer, J.: Recursive constructions for large caps. Bull. Belg. Math. Soc. Simon Stevin 6, 249-258 (1999) · Zbl 0941.51009
[9] Edel, Y., Bierbrauer, J.: Large caps in small spaces. Des. Codes Crypt. 23, 197-212 (2001) · Zbl 0994.51005 · doi:10.1023/A:1011216716700
[10] Edel’s homepage.: http://www.mathi.uni-heidelberg.de/ yves · Zbl 1154.81004
[11] Ezerman, M.F., Ling, S., Sole, P.: Additive asymmetric quantum codes. IEEE Trans. Inf. Theory 57, 5536-5550 (2014) · Zbl 1365.81039 · doi:10.1109/TIT.2011.2159040
[12] Feng, K., Chen, H.: Quantum Error-Correcting Codes. Science Press, Beijing (2010). (in Chinese)
[13] Fu, Q., Li, R., Guo, L., Gen, X.: Large caps in projective space \[PG(r,4)\] PG(r,4). Finite Fields Appl. 35, 231-246 (2015) · Zbl 1327.51012 · doi:10.1016/j.ffa.2015.04.006
[14] Glynn, D.G.: A 126-cap of \[PG(5,4)\] PG(5,4) and its corresponding [126,6,88]-code. Util. Math. 55, 201-210 (1999) · Zbl 0939.05021
[15] Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862-1868 (1996) · doi:10.1103/PhysRevA.54.1862
[16] Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of Technology (1997) · Zbl 0982.94029
[17] Grassl, M.: Bounds on the minimum distance of linear codes. http://www.codetables.de (2014). Accessed 31 Aug · Zbl 1322.81024
[18] Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Oxford University Press, Oxford (1991) · Zbl 0789.51001
[19] Hirschfeld, J.W.P., Storme, L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Blokhuis, A., Hirschfeld, J.W.P., Jungnickel, D., Thas, J.A. (eds) Finite Geometries, vol. 3 of Developmental Mathematics, pp. 201-246. Kluwer Academic Publishers, Dordrecht (2001) · Zbl 1025.51012
[20] Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003) · Zbl 1191.94107 · doi:10.1017/CBO9780511807077
[21] Li, R.: Research on additive quantum error-correcting codes. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China (2004)
[22] Li, R., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE. Trans. Inf. Theory 50, 1331-1336 (2004) · Zbl 1303.94136 · doi:10.1109/TIT.2004.828149
[23] Li, R., Li, X., Xu, Z.: Linear quantum codes of minimum distance three. Int. J. Quantum Inf. 4, 265-272 (2006)
[24] Li, R., Fu, Q., Guo, L.: Maximal entanglement-assisted constructed from projective caps. J. Air Force Eng. Univ. 15, 83-86 (2014)
[25] Ma, Y., Zhao, X., Li, R., Feng, Y.: Caps in \[PG(k-1,4)\] PG(k-1,4) and construction of quantum codes. J. Northwest. Univ. 33, 210-213 (2008) · Zbl 1199.94104
[26] Nielsen, M.A., Chuang, I.L.: Quantum Comput. Quantum Inf. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[27] Tonchev, V.: Quantum codes from caps. Discrete Math. 308, 6368-6372 (2008) · Zbl 1154.81004 · doi:10.1016/j.disc.2007.12.007
[28] Guo, L., Fu, Q., Li, R., Li, X.: On Shortening Construction of Self-Orthogonal Quaternary Codes. The seventh International Workshop on Signal Design and its Applications in Communications (IWSDA15), pp. 99-102 (2015)
[29] Yu, S.X., Bierbrauer, J., Dong, Y., Chen, Q., Oh, C.H.: All the stabilizer codes of distance 3. IEEE. Trans. Inf. Theory 59, 1331-1336 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.