×

Enlarge the scale of W state by connecting multiple existed W states. (English) Zbl 1333.81057

Summary: We propose a simple scheme to generate large-scale W state. With the cross-phase modulation, we design a photon number resolving discrimination. This discrimination, associated with some single-photon operations, is enough to connect the existed W states. No more two-photon or multi-photon operations are required. This scheme is powerful and flexible for connecting arbitrary number of W states. It is therefore suitable for creating large-scale W state with the current technology.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[2] Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[4] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[5] Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238-1243 (2014) · doi:10.1007/s11433-014-5461-x
[6] Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation ofmultipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210-1217 (2014) · doi:10.1007/s11433-013-5358-0
[7] Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696-1702 (2014) · doi:10.1007/s11433-014-5542-x
[8] Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59, 2825-2828 (2014) · doi:10.1007/s11434-014-0446-8
[9] Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000) · doi:10.1103/PhysRevA.62.062314
[10] Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156-161 (1999) · doi:10.1103/PhysRevA.59.156
[11] D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Inf. Comput. 6, 173-183 (2006) · Zbl 1152.81703
[12] Joo, J., Lee, J., Jang, J., Park, Y.J.: Quantum secure communication via a W state. J. Korean Phys. Soc. 46, 763-768 (2005)
[13] Ng, H.T., Kim, K.: Quantum estimation of magnetic-field gradient using W-state. Opt. Commun. 331, 353-358 (2014) · doi:10.1016/j.optcom.2014.06.048
[14] Zou, X.B., Pahlke, K., Mathis, W.: Generation of an entangled four-photon W state. Phys. Rev. A 66, 044302 (2002) · doi:10.1103/PhysRevA.66.044302
[15] Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002) · doi:10.1103/PhysRevA.66.064301
[16] Li, Y., Kobayashi, T.: Four-photon W state using two-crystal geometry parametric down-conversion. Phys. Rev. A 70, 014301 (2004) · doi:10.1103/PhysRevA.70.014301
[17] Shi, B.S., Tomita, A.: Creation of a polarization W state using optical fibre multiports. J. Mod. Opt. 52, 755-761 (2005) · doi:10.1080/09500340412331289565
[18] Tashima, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: An elementary optical gate for expanding an entanglement web. Phys. Rev. A 77, 030302 (2008) · Zbl 1162.81355 · doi:10.1103/PhysRevA.77.030302
[19] Tashima, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local expansion of photonic W state using a polarization-dependent beamsplitter. New J. Phys. 11, 023024 (2009) · Zbl 1191.81040 · doi:10.1088/1367-2630/11/2/023024
[20] Ikuta, R., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: Optimal local expansion of W states using linear optics and Fock states. Phys. Rev. A 83, 012314 (2011) · doi:10.1103/PhysRevA.83.012314
[21] Gong, Y.X., Zou, X.B., Huang, Y.F., Guo, G.C.: Simple scheme for expanding a polarization-entangled W state adding one photon. J. Phys. B: At. Mol. Opt. Phys. 42, 035503 (2013) · doi:10.1088/0953-4075/42/3/035503
[22] Özdemir, S.K., Matsunaga, E., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: An optical fusion gate for W-states. New J. Phys. 13, 103003 (2011) · doi:10.1088/1367-2630/13/10/103003
[23] Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013) · doi:10.1103/PhysRevA.87.032331
[24] Ozaydin, F., Bugu, S., Yesilyurt, C., Altintas, A.A., Tame, M., Özdemir, S.K.: Fusing multiple W states simultaneously with a Fredkin gate. Phys. Rev. A 89, 042311 (2014) · doi:10.1103/PhysRevA.89.042311
[25] Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Process. 12, 2965-2975 (2013) · Zbl 1273.81042 · doi:10.1007/s11128-013-0578-9
[26] Lin, Q.: Efficient generation of multi-photon W state. Sci. Sin.-Phys. Mech. Astron. 42, 54-60 (2012). (in Chinese) · doi:10.1360/132011-852
[27] Han, X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Effective scheme for W-state fusion with weak cross-Kerr nonlinearities. Quantum Inf. Process. 14, 1919-1932 (2015) · Zbl 1317.81028 · doi:10.1007/s11128-015-0960-x
[28] Hu, J.R., Lin, Q.: W state generation by adding independent single photons. Quantum Inf. Process. 14, 2847-2860 (2015) · Zbl 1327.81044 · doi:10.1007/s11128-015-1030-0
[29] Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96-100 (2015) · doi:10.1007/s11434-014-0688-5
[30] Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141-141 (2015) · doi:10.1007/s11434-014-0703-x
[31] Eibl, M., Kiesel, N., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2014) · doi:10.1103/PhysRevLett.92.077901
[32] Mikami, H., Li, Y., Fukuoka, K., Fukuoka, K., Kobayashi, T.: New high-efficiency source of a three-photon w state and its full characterization using quantum state tomography. Phys. Rev. Lett. 95, 150404 (2005) · doi:10.1103/PhysRevLett.95.150404
[33] Kiesel, N., Schmid, C., Tth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007) · doi:10.1103/PhysRevLett.98.063604
[34] Tashima, T., Wakatsuki, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Local transformation of two EPR photon pairs into a three-photon W state. Phys. Rev. Lett. 102, 130502 (2009) · Zbl 1191.81040 · doi:10.1103/PhysRevLett.102.130502
[35] Tashima, T., Kitano, T., Özdemir, S.K., Yamamoto, T., Koashi, M., Imoto, N.: Demonstration of local expansion toward large-scale entangled webs. Phys. Rev. Lett. 105, 210503 (2010) · doi:10.1103/PhysRevLett.105.210503
[36] Gräfe, M., Heilmann, R., Perez-Leijia, A., Keil, R., Dreisow, F., Heinrich, M., Moya-cessa, H., Nolte, S., Christodoulides, D.N., Szameit, A.: On-chip generation of high-order single-photon W-states. Nat. Photonics 8, 791-795 (2014) · doi:10.1038/nphoton.2014.204
[37] Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (R) (2005) · doi:10.1103/PhysRevA.71.060302
[38] Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004) · doi:10.1103/PhysRevLett.93.250502
[39] Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005) · doi:10.1088/1367-2630/7/1/137
[40] Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006) · doi:10.1088/1367-2630/8/2/030
[41] Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A 79, 022301 (2009) · doi:10.1103/PhysRevA.79.022301
[42] Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80, 042310 (2009) · doi:10.1103/PhysRevA.80.042310
[43] Lin, Q., He, B., Bergou, J.A., Ren, Y.H.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311 (2009) · doi:10.1103/PhysRevA.80.042311
[44] Lin, Q., He, B.: Efficient generation of universal two-dimensional cluster states with hybrid systems. Phys. Rev. A 82, 022331 (2010) · doi:10.1103/PhysRevA.82.022331
[45] Lin, Q., He, B.: Weaving independently generated photons into an arbitrary graph state. Phys. Rev. A 84, 062312 (2011) · doi:10.1103/PhysRevA.84.062312
[46] Lin, Q., He, B.: Highly efficient processing of multi-photon states. Sci. Rep. 5, 12792 (2015) · doi:10.1038/srep12792
[47] Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012) · doi:10.1103/PhysRevA.85.012307
[48] Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012) · doi:10.1103/PhysRevA.85.042302
[49] Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010) · doi:10.1103/PhysRevA.82.032318
[50] Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015) · doi:10.1038/srep07815
[51] Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015) · doi:10.1088/1612-2011/12/4/045203
[52] Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2015) · doi:10.1038/srep13453
[53] Dong, L., Xiu, X.M., Gao, Y.J., Yi, X.X.: A nearly deterministic scheme for generating chi-type entangled states with weak cross-Kerr nonlinearities. Quantum Inf. Process. 12, 1787-1795 (2013) · Zbl 1267.81061 · doi:10.1007/s11128-012-0481-9
[54] Dong, L., Wang, J.X., Shen, H.Z., Li, D., Xiu, X.M., Gao, Y.J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit- ip error channel. Quantum Inf. Process 13, 1413-1424 (2014) · Zbl 1303.81057 · doi:10.1007/s11128-014-0736-8
[55] Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963-978 (2015) · Zbl 1311.81040 · doi:10.1007/s11128-015-0916-1
[56] Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12, 2087-2101 (2014) · Zbl 1267.81085 · doi:10.1007/s11128-012-0511-7
[57] Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010) · doi:10.1103/PhysRevA.81.043823
[58] He, B., MacRae, A., Han, Y., Lvovsky, A., Simon, C.: Transverse multimode effects on the performance of photon-photon gates. Phys. Rev. A 83, 022312 (2011) · doi:10.1103/PhysRevA.83.022312
[59] Rispe, A., He, B., Simon, C.: Photon-Photon Gates in Bose-Einstein Condensates. Phys. Rev. Lett. 107, 043601 (2011) · doi:10.1103/PhysRevLett.107.043601
[60] He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011) · doi:10.1103/PhysRevA.83.053826
[61] He, B., Scherer, A.: Continuous-mode effects and photon-photon phase gate performance. Phys. Rev. A 85, 033814 (2012) · doi:10.1103/PhysRevA.85.033814
[62] He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014) · doi:10.1103/PhysRevLett.112.133606
[63] Feizpour, A., Hallaji, M., Dmochowski, G., Steinberg, A.M.: Observation of the nonlinear phase shift due to single post-selected photons. Nat. Phys. 11, 905-909 (2015) · doi:10.1038/nphys3433
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.