×

Kinetic models of guanidine hydrochloride-induced curing of the yeast \([\mathrm{PSI}^+]\) prion. (English) Zbl 1331.92063

Summary: A population of \([\mathrm{PSI}^+]\) Saccharomyces cerevisiae cells can be cured of the \([\mathrm{PSI}^+]\) prion by the addition of guanidine hydrochloride (GdnHCl). In this paper we extend existing nucleated polymerisation simulation models to investigate the mechanisms that might underlie curing. Our results are consistent with the belief that prions are dispersed through the cells at division following GdnHCl addition. A key feature of the simulation model is that the probability that a polymer is transmitted from mother to daughter during cell division is dependent upon the length of the polymer. The model is able to reproduce the essential features of data from several different experimental protocols involving addition and removal of GdnHCl.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C40 Biochemistry, molecular biology
Full Text: DOI

References:

[1] Byrne, L. J.; Cole, D. J.; Cox, B. S.; Ridout, M. S.; Morgan, B. J.T.; Tuite, M. F., The number and transmission of \([ PSI^+]\) prion seeds (propagons) in the yeast Saccharomyces cerevisiae, PLoS One, 4, 3, e4670 (2009)
[2] Chernoff, Y. O.; Lindquist, S. L.; Ono, B.; Inge-Vechtomov, S. G.; Liebman, S. W., Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor \([ PSI^+]\), Science, 268, 880-884 (1995)
[3] Cole, D. J.; Morgan, B. J.T.; Ridout, M. S.; Byrne, L. J.; Tuite, M. F., Estimating the number of prions in yeast cells, Mathematical Medicine and Biology, 21, 369-395 (2004) · Zbl 1071.92012
[4] Collins, S. R.; Douglass, A.; Vale, R. D.; Weissman, J. S., Mechanism of prion propagation: amyloid growth occurs by monomer addition, PLoS Biology, 2, 10, e321 (2004)
[5] Cox, B.; Ness, F.; Tuite, M., Analysis of the generation and segregation of propagons; entities that propagate the \([ PSI^+]\) prion in yeast, Genetics, 165, 23-33 (2003)
[6] Derdowski, A.; Sindi, S. S.; Klaips, C. L.; DiSalvo, S.; Serio, T. R., A size threshold limits prion transmission and establishes phenotypic diversity, Science, 330, 680-683 (2010)
[7] Eaglestone, S. S.; Ruddock, L. W.; Cox, B. S.; Tuite, M. F., Guanidine hydrochloride blocks a critical step in the propagation of the prion like determinant \([ PSI^+]\) of Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, 97, 240-244 (2000)
[8] Gibson, M. A.; Bruck, J., Efficient exact stochastic simulation of chemical systems with many species and many channels, Journal of Physical Chemistry, 104, 1876-1889 (2000)
[9] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, 22, 403-434 (1976)
[10] Hartwell, L. H.; Unger, M. W., Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division, The Journal of Cell Biology, 75, 422-435 (1977)
[11] Hill, T. L., Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates, Biophysical Journal, 44, 285-288 (1983)
[12] Kawai-Noma, S.; Pack, C.-G.; Tsuji, T.; Kinjo, M., Single mother-daughter pair analysis to clarify the diffusion properties of yeast prion Sup35 in guanidine-HCl-treated \([ PSI^+]\) cells, Genes to Cells, 14, 1045-1054 (2009)
[13] Kryndushkin, D. S.; Alexandrov, I. M.; Ter-Avanesyan, M. D.; Kushnirov, V. V., Yeast \([ PSI^+]\) prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, Journal of Biological Chemistry, 278, 49636-49643 (2003)
[14] Kushnirov, V. V.; Ter-Avanesyan, M. D., Structure and replication of yeast prions, Cell, 94, 13-16 (1998)
[15] Lund, P. M.; Cox, B. S., Reversion analysis of \([ psi^−]\) mutations in Saccharomyces cerevisiae, Genetical Research, 37, 173-182 (1981)
[16] Masel, J.; Genoud, N.; Aguzzi, A., Efficient inhibition of prion replication by PrP-\(Fc_2\) suggests that the prion is a \(PrP^{ Sc }\) oligomer, Journal of Molecular Biology, 345, 1243-1251 (2005)
[17] Masel, J.; Jansen, V. A.A.; Nowak, M. A., Quantifying the kinetic parameters of prion replication, Biophysical Chemistry, 77, 139-152 (1999)
[18] Moosavi, B.; Wongwigkarn, J.; Tuite, M., Hsp70/Hsp90 co-chaperones are required for efficient Hsp104-mediated elimination of the yeast [PSI+] prion but not for prion propagation, Yeast, 27, 167-179 (2010)
[19] Morgan, B. J.T.; Ridout, M. S.; Ruddock, L., Models for yeast prions, Biometrics, 59, 562-569 (2003) · Zbl 1210.62192
[20] Morris, A. M.; Watzky, M. A.; Finke, R. G., Protein aggregation kinetics, mechanism and curve fitting: a review of the literature, Biochimica et Biophysica Acta, 1794, 375-397 (2009)
[21] Ness, F.; Ferreira, P.; Cox, B. S.; Tuite, M. F., Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast, Molecular and Cellular Biology, 22, 5593-5605 (2002)
[22] Palmer, K.J., 2009. Stochastic models for cell biology. Ph.D. Thesis.; Palmer, K.J., 2009. Stochastic models for cell biology. Ph.D. Thesis.
[23] Palmer, K. J.; Ridout, M. S.; Morgan, B. J.T., Modelling cell generation times by using the tempered stable distribution, Journal of the Royal Statistical Society, Series C, 57, 379-397 (2008) · Zbl 1409.62225
[24] Perrett, S.; Jones, G. W., Insights into the mechanism of prion propagation, Current Opinion in Structural Biology, 18, 52-59 (2008)
[25] Pöschel, T.; Brilliantov, N. V.; Frömmel, C., Kinetics of prion growth, Biophysical Journal, 85, 3460-3474 (2003)
[26] Reidy, M.; Masison, D., Sti1 regulation of Hsp70 and Hsp90 is critical for curing of Saccharomyces cerevisiae [PSI+] prions by Hsp104, Molecular and Cell Biology, 30, 3542-3552 (2010)
[27] Rubenstein, R.; Gray, P. C.; Cleland, T. J.; Piltch, M. S.; Hlavacek, W. S.; Roberts, R. M.; Ambrosiano, J.; Kim, J.-I., Dynamics of the nucleated polymerization model of prion replication, Biophysical Chemistry, 125, 360-367 (2007)
[28] Satpute-Krishnan, P.; Langseth, S. X.; Serio, T. R., Hsp104-dependent remodeling of prion complexes mediates protein-only inheritance, PLoS Biology, 5, 2, e45 (2007)
[29] Scheibel, T.; Kowal, A. S.; Bloom, J. D.; Lindquist, S. L., Bidirectional amyloid fiber growth for a yeast prion determinant, Current Biology, 11, 366-369 (2001)
[30] Sindi, S. S.; Serio, T. R., Prion dynamics and the quest for the genetic determinant in protein-only inheritance, Current Opinion in Microbiology, 12, 623-630 (2009)
[31] Tanaka, M.; Collins, S. R.; Toyama, B. H.; Weissman, J. S., The physical basis of how prion conformations determine strain phenotypes, Nature, 442, 585-589 (2006)
[32] Tessarz, P.; Mogk, A.; Bukau, B., Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation, Molecular Microbiology, 68, 87-97 (2008)
[33] True, H. L., The battle of the fold: chaperones take on prions, Trends in Genetics, 22, 110-117 (2006)
[34] Tuite, M. F.; Cox, B. S., Propagation of yeast prions, Nature Reviews Molecular Cell Biology, 4, 878-889 (2003)
[35] Tuite, M. F.; Mundy, C. R.; Cox, B. S., Agents that cause a high frequency of genetic change from \([ PSI^+]\) to \([ psi^−]\) in Saccharomyces cerevisiae, Genetics, 98, 691-711 (1981)
[36] Wickner, R. B., [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 264, 566-569 (1994)
[37] Wilkinson, D. J., Stochastic Modelling for Systems Biology (2006), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, Florida · Zbl 1099.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.