×

A branch and cut algorithm for resource-constrained project scheduling problem subject to nonrenewable resources with pre-scheduled procurement. (English) Zbl 1401.90088

Summary: In the project scheduling literature, nonrenewable resources are assumed to be available in full amount at the beginning of the project. However, in practice, it is very common that these resources are procured along the project horizon according to some pre-scheduled plan. In this paper, we study an extended form of the resource-constrained project scheduling problem that is subject to this type of nonrenewable resources in addition to the renewable resources. In order to solve this problem, we propose a branch and cut algorithm. We incorporate with the algorithm some technics and fathoming rules to shorten the solving process. The algorithm is capable of specifying lower bounds for the problem in any middle stage of the solving process. The lower bounds can be useful to deal with large instances, for which the solving processes may be too long. We point out parameters affecting the degree of difficulty of the problem, generate extensive sets of sample instances for the problem, and perform comprehensive experimental analysis using our algorithm and also CPLEX solver. We analyze the algorithm behavior respect to the changes in instances degree of difficulties and compare its performances in different cases with the CPLEX solver.

MSC:

90B50 Management decision making, including multiple objectives
90B35 Deterministic scheduling theory in operations research
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut

Software:

CPLEX
Full Text: DOI

References:

[1] Bottcher J. et al.: Project scheduling under partially renewable resource constraints. Manag. Sci. 45(4), 543-559 (1999) · Zbl 1231.90178 · doi:10.1287/mnsc.45.4.543
[2] Bard J.F., Kontoravdis G., Yu G.: A branch-and-cut procedure for the vehicle routing problem with time windows. Trans. Sci. 36(2), 250-269 (2002) · Zbl 1134.90547 · doi:10.1287/trsc.36.2.250.565
[3] Zhu G., Bard J.F., Yu G.: A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem. INFORMS. J. Comput. 18(3), 377-400 (2006) · Zbl 1241.90168 · doi:10.1287/ijoc.1040.0121
[4] Kis T.: A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Math. Program. 103(3), 515-539 (2005) · Zbl 1125.90019 · doi:10.1007/s10107-004-0551-6
[5] Carruthers J.A., Battersby A.: Advances in critical path methods. J. Oper. Res. Soc. 17, 359-380 (1966) · doi:10.1057/jors.1966.72
[6] Brucker P. et al.: Resource-constrained project scheduling: Notation, classification, models, and methods. Eur. J. Oper. Res. 112(1), 3-41 (1999) · Zbl 0937.90030 · doi:10.1016/S0377-2217(98)00204-5
[7] Boctor F.F.: Some efficient multi-heuristic procedures for resource-constrained project scheduling. Eur. J. Oper. Res. 49(1), 3-13 (1990) · Zbl 1403.90305 · doi:10.1016/0377-2217(90)90116-S
[8] Cho J.H., Kim Y.D.: A simulated annealing algorithm for resource-constrained project scheduling problems. J. Oper. Res. Soc. 48, 736-744 (1997) · Zbl 0881.90069 · doi:10.1057/palgrave.jors.2600416
[9] Hartmann S., Kolisch R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127(2), 394-407 (2000) · Zbl 0985.90036 · doi:10.1016/S0377-2217(99)00485-3
[10] Xiong, J. et al.: A two-stage preference-based evolutionary multi-objective approach for capability planning problems. Knowl.-Based Syst. 31, 128-139 (2012) · Zbl 0316.90046
[11] Xiong, J. et al.: A knowledge-based evolutionary multi-objective approach for stochastic extended resource investment project scheduling problems (2013)
[12] Lova A. et al.: An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. Int. J. Prod. Econ. 117(2), 302-316 (2009) · doi:10.1016/j.ijpe.2008.11.002
[13] Demeulemeester E., Herroelen W.: Project Scheduling a Research Handbook. Kluwer, New York (2002) · Zbl 1059.90068
[14] Schirmer A.: Project Scheduling with Scarce Resources. Verlag Dr. Kovac, Hamburg (2000)
[15] Schirmer A., Drexl A.: Allocation of partially renewable resources: Concept, capabilities, and applications. Networks 37(1), 21-34 (2001) · Zbl 0997.90036 · doi:10.1002/1097-0037(200101)37:1<21::AID-NET3>3.0.CO;2-W
[16] Alvares-Valdes R. et al.: A scatter search algorithm for project scheduling under partially renewable resources. J. Heuristics 12(1-2), 95-113 (2006) · Zbl 1122.90036 · doi:10.1007/s10732-006-5224-6
[17] Alvares-Valdes R. et al.: GRASP and path relinking for project scheduling under partially renewable resources. Eur. J. Oper. Res. 189(3), 1153-1170 (2008) · Zbl 1146.90401 · doi:10.1016/j.ejor.2006.06.073
[18] Pritsker A.A.B., Watters L.J., Wolfe P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16, 93-107 (1969) · doi:10.1287/mnsc.16.1.93
[19] Lova A., Tormos P., Barber F.: Multi-mode resource constrained project scheduling: Scheduling schemes, priority rules and mode selection rules. Inteligencia Artif. 30, 69-96 (2006)
[20] Carlier J., Pinson E.: An algorithm for solving the jobshop problem. Manag. Sci. 35, 164-176 (1989) · Zbl 0677.90036 · doi:10.1287/mnsc.35.2.164
[21] Balas E.: Facets of the knapsack polytope. Math. Program. 8(1), 146-164 (1975) · Zbl 0316.90046 · doi:10.1007/BF01580440
[22] Hammer P.L., Johnson E.L., Peled U.N.: Facet of regular 0-1 polytopes. Math. Program. 8(1), 179-206 (1975) · Zbl 0314.90064 · doi:10.1007/BF01580442
[23] Wolsey L.: Faces for a linear inequality in 0-1 variables. Math. Program. 8(1), 165-178 (1975) · Zbl 0314.90063 · doi:10.1007/BF01580441
[24] Crowder H., Johnson E., Padberg M.W.: Solving large-scale 0-1 linear programming programs. Oper. Res. 31, 803-834 (1983) · Zbl 0576.90065 · doi:10.1287/opre.31.5.803
[25] Glover F.: Surrogate constraints. Oper. Res. 16, 741-749 (1968) · Zbl 0165.22602 · doi:10.1287/opre.16.4.741
[26] Glover F.: A multiple-dual algorithm for the zero-one integer programming problem. Oper. Res. 13, 879-919 (1965) · Zbl 0163.41301 · doi:10.1287/opre.13.6.879
[27] Geoffrion, A.M.: Implicit Enumeration Using an Imbedded Linear Program. Rand Corporation (1967) · Zbl 1146.90401
[28] Glover F., Sherali H.D., Lee Y.: Generating cuts from surrogate constraint analysis for zero-one and multiple choice programming. Comput. Optim. Appl. 8(2), 151-172 (1997) · Zbl 0886.90103 · doi:10.1023/A:1008621204567
[29] Yu G.: Min-max optimization of several classical discrete optimization problems. J. Opt. Theory. Appl. 98(1), 221-242 (1998) · Zbl 0908.90220 · doi:10.1023/A:1022601301102
[30] Balas E.: An additive algorithm for solving linear programs with zero-one variables. Oper. Res. 13, 517-546 (1965) · Zbl 0194.19903 · doi:10.1287/opre.13.4.517
[31] Zhu, G.; Bard, J.F.; Yu, G.: A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem. INFORMS J. Comput. 18(3), 377-390 (2006) · Zbl 1241.90168 · doi:10.1287/ijoc.1040.0121
[32] PSPLIB—Project Scheduling Library. June 1, (2012); Available from: http://129.187.106.231/psplib · Zbl 1241.90168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.