×

VLSI implementation of area-efficient truncated modified booth multiplier for signal processing applications. (English) Zbl 1327.94013

Summary: In this paper, hardware efficient truncated multiplier using modified booth algorithm is proposed for signed bit multiplication, such that the average absolute error is kept minimum. The proposed methodology truncates the least significant bits (LSBs) of the final product and thus minimizes the number of full adders and half adders used in partial product accumulation. This we achieve by non-generation of an initial partial product and deletion of certain LSBs in higher order partial products. To minimize the error due to non generation and omission, we add compensation bits at appropriate retained bit positions. Experimental analysis of the proposed truncation algorithm implemented in modified booth encoded multiplier using Synopsys design compiler demonstrates area saving of nearly 25.1 % for an \(8\times 8\) design. The functionality of the proposed design is verified by implementing in a signal processing system.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Wallace C.S.: A suggestion for a fast multiplier. IEEE Trans. Comput. 13, 14-17 (1964) · Zbl 0124.07907 · doi:10.1109/PGEC.1964.263830
[2] Baugh C.R., Wooley B.: A two’s complement parallel array multiplication algorithm. IEEE Trans. Comput. 12, 1045-1047 (1973) · Zbl 0269.94017 · doi:10.1109/T-C.1973.223648
[3] Dadda L.: on parallel digital multiplier. Alta Freq. 45, 574-580 (1976)
[4] Schulte, M.J.; Swartzlander, E.E.: Truncated multiplication with correction constant. In: VLSI Signal Processing VI, pp. 388-396. IEEE Press, Piscataway (1993)
[5] Lim Y.: Single precision multiplier with reduced circuit complexity for signal processing applications. IEEE Trans. Comput. 41, 1333-1336 (1992) · doi:10.1109/12.166611
[6] Jou J.M., Kuang S.R., Chen R.D.: Design of low-error fixed-width multipliers for DSP applications. IEEE Trans. Circuits Syst. II. Analog. Digit. Signal Process. 46, 836-842 (1999) · doi:10.1109/82.769795
[7] Jou S.J., Tsai M.-H., Tsao Y.-L.: Low-error reduced-width booth multipliers for DSP applications. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 50, 1470-1474 (2000)
[8] Cho K.J., Lee K.-C., Chung. J.-G., Parhi K.K.: Design of low-error fixed-width modified booth multiplier. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 12, 522-531 (2004) · doi:10.1109/TVLSI.2004.825853
[9] Kuang S.R., Wang J.P.: Modified booth multipliers with a regular partial product array. IEEE Trans. Circuits Syst.-II 56, 404-408 (2009) · doi:10.1109/TCSII.2009.2019334
[10] Alok, A.K.; James, E.S.: Modified booth truncated multipliers. In: Proceedings of the GLSVLSI’04, pp. 444-447. Boston, Massachusetts, USA, (April 26-28, 2004)
[11] Juang T.B, Hsiao S.F.: Low-error carry-free fixed-width multipliers with low-cost compensation circuits. IEEE Trans. Circuits Syst.-I Reg. Pap. 52, 299-303 (2005) · doi:10.1109/TCSII.2005.848956
[12] Van L.D., Yang C.C.: Generalized low-error area-efficient fixed-width multipliers. IEEE Trans. Circuits Syst.-I: Reg. Pap. 52, 1608-1619 (2005) · doi:10.1109/TCSI.2005.851675
[13] Wang J.P., Kuang S.R, Liang S.-C.: High-accuary fixed-width modified booth multipliers for lossy applications. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 19, 52-60 (2011) · doi:10.1109/TVLSI.2009.2032289
[14] Priya E.L.K., Lakshmi Sarojini P., Rajesh Kumar G.: Area efficient fixed-width modified booth multiplier. Int. J. Eng. Res. Technol. 1, 1-8 (2012)
[15] Garofalo V.: Fixed-width multipliers for the implementation of efficient digital FIR filters. Microelectron. J. 39, 1491-1498 (2008) · doi:10.1016/j.mejo.2008.07.005
[16] Hsiao S.-F., Jian J.-H.Z., Chen M.-C.: Low-cost FIR filter designs based on faithfully rounded truncated multiple constant multiplication/accumulation. IEEE Trans. Circuits Syst.-II 60, 287-291 (2013) · doi:10.1109/TCSII.2013.2251958
[17] Ko H.-J., Hsiao S.-F.: Design and application of faithfully rounded and truncated multipliers with combined deletion, reduction, truncation, and rounding. IEEE Trans. Circuits Syst.-II 58, 304-308 (2011) · doi:10.1109/TCSII.2011.2148970
[18] Parhi K.K.: VLSI Digital Signal Processing Systems, pp. 478-481. Wiley, New York (2009)
[19] Petra N., De Caro D., Garofalo V., Napoli E., Strollo A.G.M.: Design of fixed-width multipliers with linear compensation function. IEEE Trans. Circuits Syst.-I 58, 947-960 (2011) · doi:10.1109/TCSI.2010.2090572
[20] Gu R.X., Elmasry M.I.: Power dissipation analysis and optimization of deep sub-micron CMOS digital circuits. IEEE J. Solid-State Circuits 31, 707-713 (1996) · doi:10.1109/4.509853
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.