×

Sum rules via large deviations. (English) Zbl 1327.47028

Summary: In the theory of orthogonal polynomials, sum rules are remarkable relationships between a functional defined on a subset of all probability measures involving the reverse Kullback-Leibler divergence with respect to a particular distribution and recursion coefficients related to the orthogonal polynomial construction. R. Killip and B. Simon [Ann. Math. (2) 158, No. 1, 253–321 (2003; Zbl 1050.47025)] have given a revival interest to this subject by showing a quite surprising sum rule for measures dominating the semicircular distribution on \([- 2, 2]\). This sum rule includes a contribution of the atomic part of the measure away from \([- 2, 2]\). In this paper, we recover this sum rule by using probabilistic tools on random matrices. Furthermore, we obtain new (up to our knowledge) magic sum rules for the reverse Kullback-Leibler divergence with respect to the Marchenko-Pastur or Kesten-McKay distributions. As in the semicircular case, these formulas include a contribution of the atomic part appearing away from the support of the reference measure.

MSC:

47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
47B15 Hermitian and normal operators (spectral measures, functional calculus, etc.)
47B80 Random linear operators
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
60B20 Random matrices (probabilistic aspects)

Citations:

Zbl 1050.47025

References:

[1] Albeverio, S.; Pastur, L.; Shcherbina, M., On the \(1 / n\) expansion for some unitary invariant ensembles of random matrices, Comm. Math. Phys., 224, 1, 271-305 (2001) · Zbl 1038.82039
[2] Anderson, G.; Guionnet, A.; Zeitouni, O., An Introduction to Random Matrices (2010), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1184.15023
[3] Auffinger, A.; Ben Arous, G.; Černỳ, J., Random matrices and complexity of spin glasses, Comm. Pure Appl. Math., 66, 2, 165-201 (2013) · Zbl 1269.82066
[4] Baldi, P., Large deviations and stochastic homogenization, Ann. Mat. Pura Appl., 151, 1, 161-177 (1988) · Zbl 0654.60024
[5] Ben Arous, G.; Dembo, A.; Guionnet, A., Aging of spherical spin glasses, Probab. Theory Related Fields, 120, 1-67 (2001) · Zbl 0993.60055
[6] Benaych-Georges, F.; Guionnet, A.; Maïda, M., Large deviations of the extreme eigenvalues of random deformations of matrices, Probab. Theory Related Fields, 154, 3-4, 703-751 (2012) · Zbl 1261.15042
[7] Borot, G.; Guionnet, A., Asymptotic expansion of \(β\) matrix models in the multi-cut regime (2013), arXiv preprint · Zbl 1344.60012
[8] Borot, G.; Guionnet, A., Asymptotic expansion of \(β\) matrix models in the one-cut regime, Comm. Math. Phys., 317, 2, 447-483 (2013) · Zbl 1344.60012
[9] Bourgade, P.; Nikeghbali, A.; Rouault, A., Circular Jacobi ensembles and deformed Verblunsky coefficients, Int. Math. Res. Not., 23, 4357-4394 (2009) · Zbl 1183.33013
[10] Damanik, D.; Killip, R.; Simon, B., Perturbations of orthogonal polynomials with periodic recursion coefficients, Ann. of Math., 171, 3, 1931-2010 (2010) · Zbl 1194.47031
[11] Deift, P.; Kriecherbauer, T.; McLaughlin, K.; Venakides, S.; Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math., 52, 11, 1335-1425 (1999) · Zbl 0944.42013
[12] Dembo, A.; Zeitouni, O., Large Deviations Techniques and Applications (1998), Springer · Zbl 0896.60013
[13] Dette, H.; Studden, W., The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis, Wiley Series in Probability and Statistics (1997) · Zbl 0886.62002
[14] Dumitriu, I.; Edelman, A., Matrix models for beta ensembles, J. Math. Phys., 43, 11, 5830-5847 (2002) · Zbl 1060.82020
[15] Fan, C.; Guionnet, A.; Song, Y.; Wang, A., Convergence of eigenvalues to the support of the limiting measure in critical \(β\) matrix models (2014), arXiv preprint · Zbl 1331.60018
[16] Gamboa, F.; Lozada-Chang, L.-V., Large deviations for random power moment problem, Ann. Probab., 32, 3B, 2819-2837 (2004) · Zbl 1062.60023
[17] Gamboa, F.; Nagel, J.; Rouault, A.; Wagener, J., Large deviations for random matricial moment problems, J. Multivariate Anal., 106, 17-35 (2012) · Zbl 1236.15068
[18] Gamboa, F.; Rouault, A., Canonical moments and random spectral measures, J. Theoret. Probab., 23, 1015-1038 (2010) · Zbl 1204.60009
[19] Gamboa, F.; Rouault, A., Large deviations for random spectral measures and sum rules, Appl. Math. Res. Express. AMRX, 2, 281-307 (2011) · Zbl 1261.60008
[20] Hardy, A., A note on large deviations for 2D Coulomb gas with weakly confining potential, Electron. Commun. Probab., 17, 19, 1-12 (2012) · Zbl 1258.60027
[21] Johansson, K., On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J., 91, 1, 151-204 (1998) · Zbl 1039.82504
[22] Killip, R., Spectral theory via sum rules, (Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday. Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, Proc. Sympos. Pure Math., vol. 76 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 907-930 · Zbl 1137.47001
[23] Killip, R.; Nenciu, I., Matrix models for circular ensembles, Int. Math. Res. Not., 50, 2665-2701 (2004) · Zbl 1255.82004
[24] Killip, R.; Simon, B., Sum rules for Jacobi matrices and their applications to spectral theory, Ann. of Math., 158, 1, 253-321 (2003) · Zbl 1050.47025
[25] Krishnapur, M.; Rider, B.; Virag, B., Universality of the stochastic Airy operator (2013)
[26] Kupin, S., Spectral properties of Jacobi matrices and sum rules of special form, J. Funct. Anal., 227, 1, 1-29 (2005) · Zbl 1083.47025
[27] Nazarov, F.; Peherstorfer, F.; Volberg, A.; Yuditskii, P., On generalized sum rules for Jacobi matrices, Int. Math. Res. Not., 3, 155-186 (2005) · Zbl 1089.47025
[28] Rockafellar, R., Integrals which are convex functionals, II, Pacific J. Math., 39, 2, 439-469 (1971) · Zbl 0236.46031
[29] Saitoh, N.; Yoshida, H., The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory, Probab. Math. Statist., 21, 1, 159-170 (2001), Acta Univ. Wratislav. No. 2298 · Zbl 1020.46019
[30] Serfaty, S., Coulomb gases and Ginzburg-Landau vortices (2014) · Zbl 1291.82142
[31] Simon, B., Orthogonal polynomials with exponentially decaying recursion coefficients, (Probability and Mathematical Physics (2007)), 453-463 · Zbl 1143.42306
[32] Simon, B., Szegő’s Theorem and Its Descendants, M. B. Porter Lectures (2011), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1230.33001
[33] Trotter, H., Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegő, Adv. Math., 54, 1, 67-82 (1984) · Zbl 0562.15005
[34] Xia, N.; Qin, Y.; Bai, Z., Convergence rates of eigenvector empirical spectral distribution of large dimensional sample covariance matrix, Ann. Statist., 41, 5, 2572-2607 (2013) · Zbl 1285.15018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.