×

Squared chaotic random variables: new moment inequalities with applications. (English) Zbl 1355.60013

P. E. Frenkel [Math. Res. Lett. 15, No. 2–3, 351–358 (2008; Zbl 1160.46311)] proved that if \(X_1,\dots,X_n\) are jointly normal random variables with zero expectation, then \[ \operatorname{E}X_1^2 \cdots \operatorname{E}X_n^2\leq \operatorname{E}(X_1^2\cdots X_n^2). \] In the present paper, the authors give an extension of this result by showing that if \((G_1,\dots,G_n)\) is a real-valued centered Gaussian vector whose components have unit variance, then \[ \operatorname{E}[H_{p_1}(G_1)^2]\cdots \operatorname{E}[H_{p_n}(G_n)^2] \leq \operatorname{E}[H_{p_1}(G_1)^2\cdots H_{p_n}(G_n)^2] \] for all integers \(p_1,\dots,p_n\geq1\), in which the \(\{H_{p_i}\}\) are Hermite polynomials defined recursively by \(H_0=1\) and \(H_{k+1}=\delta H_k\), where \(\delta f(x)=xf(x)-f'(x)\).
This result is used to present a refinement of the well-known Hadamard inequality. If \(A=[a_{ij}]\) is a positive definite \(m\times m\) matrix, the so-called Hadamard inequality asserts that \(\det A\leq \prod_{i=1}^{m} a_{ii}\). Let \(S=[s_{ij}]\) be a positive definite matrix, \(Z=\mathrm{diag}(s_{ii})\) and \(I\) be the identity matrix. The authors prove that if \(Z<I\) and \(Z+S<2I\), then \[ \Sigma=I-\frac{1}{2}(I-Z)^\frac{-1}{2}(S-Z)(I-Z)^\frac{-1}{2} \] is a positive definite matrix with \(\Sigma_{ii}=1\). Moreover, for every centered Gaussian vector \((X_1,\dots,X_n)\) of covariance \(\Sigma\), \[ \det S=\left(\sum_{k_1,\dots,k_n=0}^{\infty}\frac{\operatorname{E}[H_{k_1}(X_1)^2\cdots H_{k_n}(X_n)^2]}{k_1!\cdots k_n!}\prod_{i=1}^{n}\sqrt{s_{ii}}(1-s_{ii})^{k_i}\right)^{-2}. \]

MSC:

60B99 Probability theory on algebraic and topological structures
60G15 Gaussian processes
15A15 Determinants, permanents, traces, other special matrix functions

Citations:

Zbl 1160.46311

References:

[1] Ambrus, G., Analytic and probabilistic problems in discrete geometry (2009), PhD dissertation
[2] Arias-de-Reyna, J., Gaussian variables, polynomials and permanents, Linear Algebra Appl., 285, 1, 107-114 (1998) · Zbl 0934.15036
[3] Azmoodeh, E.; Campese, S.; Poly, G., Fourth moment theorems for Markov diffusion generators, J. Funct. Anal., 266, 4, 2341-2359 (2014) · Zbl 1292.60078
[4] Azmoodeh, E.; Malicet, D.; Mijoule, G.; Poly, G., Generalization of the Nualart-Peccati criterion, Ann. Probab. (2013), in press · Zbl 1342.60026
[5] Ball, K. M., The plank problem for symmetric bodies, Invent. Math., 104, 535-543 (1991) · Zbl 0702.52003
[6] Benítem, C.; Sarantopolous, Y.; Tonge, A. M., Lower bounds for norms of products of polynomials, Math. Proc. Cambridge Philos. Soc., 124, 395-408 (1998) · Zbl 0937.46044
[7] Bhandari, S. K.; Basu, A., On the unlinking conjecture of independent polynomial functions, J. Multivariate Anal., 97, 6, 1355-1360 (2006) · Zbl 1112.62045
[8] Cover, T. M.; Thomas, J. A., Determinant inequalities via information theory, SIAM J. Matrix Anal. Appl., 9, 3, 384-392 (1988) · Zbl 0651.15015
[9] Foata, D., A combinatorial proof of the Mehler formula, J. Combin. Theory Ser. A, 24, 367-376 (1978) · Zbl 0401.33008
[10] Frenkel, P. E., Pfaffians, hafnians and products of real linear functionals, Math. Res. Lett., 15, 2, 351-358 (2007) · Zbl 1160.46311
[11] Hargé, G., Characterization of equality in the correlation inequality for convex functions, the U-conjecture, Ann. Inst. Henri Poincaré (B) Probab. Stat., 41, 753-765 (2005) · Zbl 1070.60018
[12] Horn, R. A.; Johnson, C. R., Matrix Analysis (2012), Cambridge University Press
[13] Hu, Y., Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities, J. Theoret. Probab., 10, 835-848 (1997) · Zbl 0891.60060
[14] Kagan, A. M.; Linnik, Y. V.; Rao, C. R., Characterization Problems in Mathematical Statistics (1973), Wiley · Zbl 0271.62002
[15] Kallenberg, O., On an independence criterion for multiple Wiener integrals, Ann. Probab., 19, 2, 483-485 (1991) · Zbl 0738.60052
[16] Li, W.; Wei, A., A Gaussian inequality for expected absolute products, J. Theoret. Probab., 25, 1, 92-99 (2012) · Zbl 1237.60017
[17] Nourdin, I.; Peccati, G., Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality (2012), Cambridge University Press · Zbl 1266.60001
[18] Pappas, A.; Révész, Sz., Linear polarization constants of Hilbert spaces, J. Math. Anal. Appl., 300, 129-146 (2004) · Zbl 1081.46021
[19] Pinasco, D., Lower bounds for norms of products of polynomials via Bombieri inequality, Trans. Amer. Math. Soc., 364, 8, 3993-4010 (2012) · Zbl 1283.30004
[20] Rosiński, J.; Samorodnitsky, G., Product formula, tails and independence of multiple stable integrals, (Advances in Stochastic Inequalities. Advances in Stochastic Inequalities, Atlanta, GA, 1997. Advances in Stochastic Inequalities. Advances in Stochastic Inequalities, Atlanta, GA, 1997, Contemp. Math., vol. 234 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 169-194 · Zbl 0940.60025
[21] Ryan, R.; Turett, B., Geometry of spaces of polynomials, J. Math. Anal. Appl., 221, 698-711 (1998) · Zbl 0912.46039
[22] Üstünel, A. S.; Zakai, M., On independence and conditioning on Wiener space, Ann. Probab., 17, 4, 1441-1453 (1989) · Zbl 0693.60046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.