×

Energy-pressure relation for low-dimensional gases. (English) Zbl 1325.82011

Summary: A particularly simple relation of proportionality between internal energy and pressure holds for scale-invariant thermodynamic systems (with Hamiltonians homogeneous functions of the coordinates), including classical and quantum - Bose and Fermi - ideal gases. One can quantify the deviation from such a relation by introducing the internal energy shift as the difference between the internal energy of the system and the corresponding value for scale-invariant (including ideal) gases. After discussing some general thermodynamic properties associated with the scale-invariance, we provide criteria for which the internal energy shift density of an imperfect (classical or quantum) gas is a bounded function of temperature. We then study the internal energy shift and deviations from the energy-pressure proportionality in low-dimensional models of gases interpolating between the ideal Bose and the ideal Fermi gases, focusing on the Lieb-Liniger model in 1d and on the anyonic gas in 2d. In 1d the internal energy shift is determined from the thermodynamic Bethe ansatz integral equations and an explicit relation for it is given at high temperature. Our results show that the internal energy shift is positive, it vanishes in the two limits of zero and infinite coupling (respectively the ideal Bose and the Tonks-Girardeau gas) and it has a maximum at a finite, temperature-depending, value of the coupling. Remarkably, at fixed coupling the energy shift density saturates to a finite value for infinite temperature. In 2d we consider systems of Abelian anyons and non-Abelian Chern-Simons particles: as it can be seen also directly from a study of the virial coefficients, in the usually considered hard-core limit the internal energy shift vanishes and the energy is just proportional to the pressure, with the proportionality constant being simply the area of the system. Soft-core boundary conditions at coincident points for the two-body wavefunction introduce a length scale, and induce a non-vanishing internal energy shift: the soft-core thermodynamics is considered in the dilute regime for both the families of anyonic models and in that limit we can show that the energy-pressure ratio does not match the area of the system, opposed to what happens for hard-core (and in particular 2d Bose and Fermi) ideal anyonic gases.

MSC:

82B30 Statistical thermodynamics
82B40 Kinetic theory of gases in equilibrium statistical mechanics
82D05 Statistical mechanics of gases
82B23 Exactly solvable models; Bethe ansatz

Software:

DLMF

References:

[1] Mayer, J. E.; Mayer, M. G., Statistical Mechanics (1977), Wiley: Wiley New York · JFM 66.1175.01
[2] Landau, L. D.; Lifshitz, E. M., Statistical Physics (1980), Pergamon Press: Pergamon Press New York · Zbl 0080.19702
[3] Huang, K., Statistical Mechanics (1987), Wiley: Wiley New York · Zbl 1041.82500
[4] McQuarrie, D. A., Statistical Mechanics (2000), University Science Books: University Science Books Sausalito, CA · Zbl 1137.82301
[5] Van der Waals, J. D., Over de Continuiteit van den Gasen Vloeistoftoestand (1873), A.W. Sijthoff: A.W. Sijthoff Leiden · JFM 05.0515.01
[6] Lieb, E. H.; Liniger, W., Phys. Rev., 130, 1605 (1963) · Zbl 0138.23001
[7] Yang, C. N.; Yang, C. P., J. Math. Phys., 10, 1115 (1969) · Zbl 0987.82503
[8] Tonks, L., Phys. Rev., 50, 955 (1936) · JFM 62.1607.19
[9] Girardeau, M., J. Math. Phys., 1, 516 (1960) · Zbl 0098.21704
[10] Lenard, A., J. Math. Phys., 5, 930 (1964)
[11] Yurovsky, V. A.; Olshanii, M.; Weiss, D. S., Adv. At. Mol. Opt. Phys., 55, 61 (2008)
[12] Pethick, C. J.; Smith, H., Bose-Einstein Condensation in Dilute Alkali Gases (2008), Cambridge University Press: Cambridge University Press Cambridge, Chap. 15
[13] Bouchoule, I.; van Druten, N. J.; Westbrook, C. I.
[14] Cazalilla, M. A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M., Rev. Mod. Phys., 83, 1405 (2011)
[15] Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G., Quantum Inverse Scattering Method and Correlation Functions (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0787.47006
[16] Šamaj, L.; Bajnok, Z., Introduction to the Statistical Physics of Integrable Many-Body Systems (2013), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1307.82002
[17] Olshanii, M., Phys. Rev. Lett., 81, 938 (1998)
[18] Kinoshita, T.; Wenger, T.; Weiss, D. S., Science, 305, 1125 (2004)
[19] Paredes, B.; Widera, A.; Murg, V.; Mandel, O.; Folling, S.; Cirac, I.; Shlyapnikov, G. V.; Hansch, T. W.; Bloch, I., Nature, 429, 277 (2004)
[20] van Amerongen, A. H.; van Es, J. J.; Wicke, P.; Kheruntsyan, K. V.; van Druten, N. J., Phys. Rev. Lett., 100, 090402 (2008)
[21] Astrakharchik, G. E.; Boronat, J.; Casulleras, J.; Giorgini, S., Phys. Rev. Lett., 95, 190407 (2005)
[22] Wilczek, F., Fractional Statistics and Anyon Superconductivity (1990), World Scientific Publishing: World Scientific Publishing Singapore · Zbl 0709.62735
[23] Lerda, A., Anyons: Quantum Mechanics of Particles with Fractional Statistics (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0785.60048
[24] Forte, S., Rev. Mod. Phys., 64, 193 (1992)
[25] Khare, A., Fractional Statistics and Quantum Theory (2005), World Scientific Publishing: World Scientific Publishing Singapore · Zbl 1085.81002
[26] Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Das Sarma, S., Rev. Mod. Phys., 80, 1083 (2008) · Zbl 1205.81062
[27] Arovas, D. P.; Schrieffer, J. R.; Wilczek, F.; Zee, A., Nucl. Phys. B, 251, 117 (1985)
[28] Bhaduri, R. K.; Bhalerao, R. S.; Khare, A.; Law, J.; Murthy, M. V.N., Phys. Rev. Lett., 66, 523 (1991)
[29] Myrheim, J.; Olausson, K., Phys. Lett. B, 305, E428 (1993)
[30] Dasnieres de Veigy, A., Nucl. Phys. B, 388, 715 (1992)
[31] Lo, H.-K., Phys. Rev. D, 48, 4999 (1993)
[32] Lee, T., Phys. Rev. Lett., 74, 4967 (1995)
[33] Hagen, C. R., Phys. Rev. Lett., 76, 4086 (1996)
[34] Mancarella, F.; Trombettoni, A.; Mussardo, G., Nucl. Phys. B, 867, 950 (2013) · Zbl 1262.81262
[35] Bourdeau, M.; Sorkin, S. D., Phys. Rev. D, 45, 687 (1992)
[36] Manuel, C.; Tarrach, R., Phys. Lett. B, 268, 222 (1991)
[37] Giacconi, P.; Maltoni, F.; Soldati, R., Phys. Rev. B, 53, 10065 (1996)
[38] Kim, C., Phys. Lett. B, 431, 374 (1998)
[39] Bak, D.; Jackiw, R.; Pi, S.-Y., Phys. Rev. D, 49, 6778 (1994)
[40] Amelino-Camelia, G.; Bak, D., Phys. Lett. B, 343, 231 (1995)
[41] Lee, C., Int. J. Mod. Phys. A, 12, 1033 (1997) · Zbl 0985.81816
[42] Mancarella, F.; Trombettoni, A.; Mussardo, G., J. Phys. A, Math. Theor., 46, 275001 (2013) · Zbl 1271.82025
[43] Bailey, N. P.; Pedersen, U. R.; Gnan, N.; Schrøder, T. B.; Dyre, J. C., J. Chem. Phys., 129, 184507 (2008)
[44] Bailey, N. P.; Pedersen, U. R.; Gnan, N.; Schrøder, T. B.; Dyre, J. C., J. Chem. Phys., 129, 184508 (2008)
[45] Schrøder, T. B.; Bailey, N. P.; Pedersen, U. R.; Gnan, N.; Dyre, J. C., J. Chem. Phys., 131, 234503 (2009)
[46] Gnan, N.; Schrøder, T. B.; Pedersen, U. R.; Bailey, N. P.; Dyre, J. C., J. Chem. Phys., 131, 234504 (2009)
[47] Schrøder, T. B.; Gnan, N.; Pedersen, U. R.; Bailey, N. P.; Dyre, J. C., J. Chem. Phys., 134, 164505 (2011)
[48] Dyre, J. C., Phys. Rev. E, 88, 042139 (2013)
[49] Schrøder, T. B.; Dyre, J. C.
[50] Uhlenbeck, G. E.; Uehling, E. A., Phys. Rev., 39, 1014 (1932)
[51] Ho, T. L., Phys. Rev. Lett., 92, 090402 (2004)
[52] Castin, Y.; Werner, F., (Zwerger, W., The BCS-BEC Crossover and the Unitary Fermi Gas (2012), Springer: Springer Heidelberg), (Chapter 5)
[53] Yan, Z., Eur. J. Phys., 21, 625 (2000) · Zbl 0981.80001
[54] Atkins, P. W.; de Paula, J., Physical Chemistry (2010), Oxford University Press: Oxford University Press Oxford
[55] Smith, J. M.; Van Ness, H. C.; Abbot, M. M., Introduction to Chemical Engineering Thermodynamics (2000), McGraw-Hill
[56] Yang, C. P., Phys. Rev. A, 2, 154 (1970)
[57] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H., Solvable Models in Quantum Mechanics (1988), Springer-Verlag: Springer-Verlag Berlin · Zbl 0679.46057
[58] Moroz, A., Phys. Rev. A, 53, 669 (1996)
[59] Jackiw, R.; Pi, S.-Y., Phys. Rev. D, 42, 3500 (1990)
[60] Kim, S. J., Phys. Lett. B, 343, 244 (1995)
[61] Kim, S. J.; Lee, C., Phys. Rev. D, 55, 2227 (1997)
[62] Dunne, G. V., Lectures at 1998 Les Houches Summer School “Topological Aspects of Low Dimensional Systems”
[63] Guadagnini, E.; Martellini, M.; Mintchev, M., Nucl. Phys. B, 336, 581 (1990)
[64] Verlinde, E., A note on braid statistics and the non-Abelian Aharonov-Bohm effect, (Modern Quantum Field Theory (1991), World Scientific: World Scientific Singapore), 450
[65] Lee, T.; Oh, P., Ann. Phys., 235, 413 (1994) · Zbl 0806.58055
[66] Kim, W. T.; Lee, C., Phys. Rev. D, 49, 6829 (1994)
[67] Polychronakos, A. P., Phys. Rev. Lett., 84, 1268 (2000)
[68] Cappelli, A.; Valtancoli, P., Nucl. Phys. B, 453, 727 (1995)
[69] Deser, S.; Jackiw, R.; Templeton, S., Ann. Phys., 140, 372 (1982)
[70] Comtet, A.; Georgelin, Y.; Ouvry, S., J. Phys. A, 22, 3917 (1989)
[71] Sutherland, B., J. Math. Phys., 12, 251 (1971)
[72] Wadati, M.; Kato, G., Chaos Solitons Fractals, 14, 23 (2001)
[73] Isihara, A., Statistical Physics (1971), Academic Press: Academic Press New York
[74] (Olver, F. W.J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1198.00002
[76] Comtet, A.; McCabe, J.; Ouvry, S., Phys. Lett. B, 260, 372 (1991)
[77] Knizhnik, V. G.; Zamolodchikov, A. B., Nucl. Phys. B, 247, 83 (1984) · Zbl 0661.17020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.