×

Positive mass theorem in extended supergravities. (English) Zbl 1325.83005

Summary: Following the Witten-Nester formalism, we present a useful prescription using Weyl spinors towards the positivity of mass. As a generalization of [the authors, Phys. Rev. D89, No. 2, Article No. 023011, 8 p. (2014: arxiv:1310.1663)], we show that some ”positivity conditions” must be imposed upon the gauge connections appearing in the supercovariant derivative acting on spinors. A complete classification of the connection fulfilling the positivity conditions is given. It turns out that these positivity conditions are indeed satisfied for a number of extended supergravity theories. It is shown that the positivity property holds for the Einstein-complex scalar system, provided that the target space is Hodge-Kähler and the potential is expressed in terms of the superpotential. In the Einstein-Maxwell-dilaton theory with a dilaton potential, the dilaton coupling function and the superpotential are fixed by the positive mass property. We also explore the \(N = 8\) gauged supergravity and demonstrate that the positivity of the mass holds independently of the gaugings and the deformation parameters.

MSC:

83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C22 Einstein-Maxwell equations
83E50 Supergravity
83E15 Kaluza-Klein and other higher-dimensional theories
83F05 Relativistic cosmology

References:

[1] Schoen, R.; Yau, S. T., Commun. Math. Phys., 65, 45 (1979) · Zbl 0405.53045
[2] Schoen, R.; Yau, S.-T., Commun. Math. Phys., 79, 231 (1981) · Zbl 0494.53028
[3] Bondi, H., Rev. Mod. Phys., 29, 423 (1957) · Zbl 0079.42001
[4] Jang, P. S.; Wald, R. M., J. Math. Phys., 18, 41 (1977)
[5] Huisken, G.; Ilmanen, T., J. Differ. Geom., 59, 353 (2001) · Zbl 1055.53052
[6] Witten, E., Commun. Math. Phys., 80, 381 (1981) · Zbl 1051.83532
[7] Nester, J. A., Phys. Lett. A, 83, 241 (1981)
[8] Compere, G.; Copsey, K.; de Buyl, S.; Mann, R. B., J. High Energy Phys., 0912, 047 (2009)
[9] Gibbons, G. W.; Warner, N. P., Class. Quantum Gravity, 31, 025016 (2014) · Zbl 1292.83031
[10] Gibbons, G. W.; Kastor, D.; London, L. A.J.; Townsend, P. K.; Traschen, J. H., Nucl. Phys. B, 416, 850 (1994) · Zbl 1007.81565
[11] Deser, S.; Teitelboim, C., Phys. Rev. Lett., 39, 249 (1977)
[12] Horowitz, G. T.; Strominger, A., Phys. Rev. D, 27, 2793 (1983)
[13] Hull, C. M., Commun. Math. Phys., 90, 545 (1983)
[14] Deser, S., Phys. Rev. D, 27, 2805 (1983)
[15] Maeda, K.-i.; Nozawa, M., Prog. Theor. Phys. Suppl., 189, 310 (2011) · Zbl 1291.83153
[16] Gibbons, G. W.; Hull, C. M., Phys. Lett. B, 109, 190 (1982)
[17] Gibbons, G. W.; Hawking, S. W.; Horowitz, G. T.; Perry, M. J., Commun. Math. Phys., 88, 295 (1983)
[18] Gibbons, G. W.; Hull, C. M.; Warner, N. P., Nucl. Phys. B, 218, 173 (1983)
[19] Boucher, W., Nucl. Phys. B, 242, 282 (1984)
[20] Townsend, P. K., Phys. Lett. B, 148, 55 (1984)
[21] Gibbons, G. W.; Horowitz, G. T.; Townsend, P. K., Class. Quantum Gravity, 12, 297 (1995) · Zbl 0817.53054
[22] Kostelecky, V. A.; Perry, M. J., Phys. Lett. B, 371, 191 (1996)
[23] Shiromizu, T., Phys. Rev. D, 60, 104046 (1999)
[24] Rogatko, M., Class. Quantum Gravity, 19, 5063 (2002) · Zbl 1021.83013
[25] Nozawa, M., Class. Quantum Gravity, 28, 175013 (2011) · Zbl 1225.83069
[26] Nozawa, M.; Shiromizu, T., Phys. Rev. D, 89, 023011 (2014)
[27] Elder, B.; Joyce, A.; Khoury, J.; Tolley, A. J.
[28] Arnowitt, R. L.; Deser, S.; Misner, C. W., Gen. Relativ. Gravit., 40, 1997 (2008) · Zbl 1152.83320
[29] Cacciatori, S. L.; Klemm, D.; Mansi, D. S.; Zorzan, E., J. High Energy Phys., 0805, 097 (2008)
[30] Meessen, P.; Palomo-Lozano, A., J. High Energy Phys., 0905, 042 (2009)
[31] Abbott, L. F.; Deser, S., Nucl. Phys. B, 195, 76 (1982) · Zbl 0900.53033
[32] Henneaux, M.; Teitelboim, C., Commun. Math. Phys., 98, 391 (1985) · Zbl 1032.83502
[33] Ashtekar, A.; Das, S., Class. Quantum Gravity, 17, L17 (2000) · Zbl 0943.83023
[34] Hollands, S.; Ishibashi, A.; Marolf, D., Class. Quantum Gravity, 22, 2881 (2005) · Zbl 1082.83014
[35] Romans, L. J., Nucl. Phys. B, 383, 395 (1992)
[36] Caldarelli, M. M.; Klemm, D., Nucl. Phys. B, 545, 434 (1999) · Zbl 0953.83020
[37] Hristov, K.; Toldo, C.; Vandoren, S., J. High Energy Phys., 1112, 014 (2011)
[38] Hristov, K., J. High Energy Phys., 1203, 095 (2012)
[39] Klemm, D.; Nozawa, M., J. High Energy Phys., 1305, 123 (2013)
[40] Dibitetto, G.; Klemm, D., J. High Energy Phys., 1012, 005 (2010)
[41] Breitenlohner, P.; Freedman, D. Z., Ann. Phys., 144, 249 (1982) · Zbl 0606.53044
[42] Hertog, T.; Horowitz, G. T.; Maeda, K., Phys. Rev. D, 69, 105001 (2004) · Zbl 1405.83064
[43] Hertog, T.; Maeda, K., J. High Energy Phys., 0407, 051 (2004)
[44] Duff, M. J.; Liu, J. T., Nucl. Phys. B, 554, 237 (1999) · Zbl 0951.83060
[45] de Wit, B.; Nicolai, H., Nucl. Phys. B, 208, 323 (1982)
[46] Dall’Agata, G.; Inverso, G.; Trigiante, M., Phys. Rev. Lett., 109, 201301 (2012)
[47] Kodama, H.; Nozawa, M., J. High Energy Phys., 1301, 045 (2013)
[48] Dall’Agata, G.; Inverso, G., Nucl. Phys. B, 859, 70 (2012) · Zbl 1246.83217
[49] Dall’Agata, G.; Inverso, G., Phys. Lett. B, 718, 1132 (2013) · Zbl 1332.83104
[50] Catino, F.; Dall’Agata, G.; Inverso, G.; Zwirner, F., J. High Energy Phys., 1309, 040 (2013)
[51] Aldazabal, G.; Graña, M.; Marqués, D.; Rosabal, J. A., J. High Energy Phys., 1306, 046 (2013)
[52] de Wit, B.; Samtleben, H.; Trigiante, M., J. High Energy Phys., 0706, 049 (2007)
[53] Le Diffon, A.; Samtleben, H.; Trigiante, M., J. High Energy Phys., 1104, 079 (2011)
[54] de Wit, B.; Samtleben, H.; Trigiante, M., J. High Energy Phys., 0509, 016 (2005)
[55] Meessen, P.; Ortin, T.; Vaula, S., J. High Energy Phys., 1011, 072 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.