×

Gapless superconductivity and string theory. (English) Zbl 1325.82018

Summary: Coexistence of superconducting and normal components in nanowires at currents below the critical (a “mixed” state) would have important consequences for the nature and range of potential applications of these systems. For clean samples, it represents a genuine interaction effect, not seen in the mean-field theory. Here we consider properties of such a state in the gravity dual of a strongly coupled superconductor constructed from D3 and D5 branes. We find numerically uniform gapless solutions containing both components but argue that they are unstable against phase separation, as their free energies are not convex. We speculate on the possible nature of the resulting non-uniform sate (“emulsion”) and draw analogies between that state and the familiar mixed state of a type II superconductor in a magnetic field.

MSC:

82D55 Statistical mechanics of superconductors
82D77 Quantum waveguides, quantum wires
82D80 Statistical mechanics of nanostructures and nanoparticles
82C27 Dynamic critical phenomena in statistical mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Bezryadin, A., Superconductivity in Nanowires: Fabrication and Quantum Transport (2013), Wiley-VCH: Wiley-VCH Weinheim
[2] Altomare, F.; Chang, A. M., One-Dimensional Superconductivity in Nanowires (2013), Wiley-VCH: Wiley-VCH Weinheim
[3] Little, W. A., Decay of persistent currents in small superconductors, Phys. Rev., 156, 396 (1967)
[4] Kulik, I. O., Surface-charge oscillations in superconductors, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Sov. Phys. JETP, 38, 1008 (1974)
[5] Mooij, J. E.; Schön, G., Propagating plasma mode in thin superconducting filaments, Phys. Rev. Lett., 55, 114 (1985)
[6] Khlebnikov, S., Quasiparticle scattering by quantum phase slips in one-dimensional superfluids, Phys. Rev. Lett., 93, 090403 (2004)
[7] Polchinski, J., Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett., 75, 4724 (1995) · Zbl 1020.81797
[8] Maldacena, J. M., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047
[9] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Gauge theory correlators from non-critical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126
[10] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048
[11] Khlebnikov, S., Winding branes and persistent currents, J. High Energy Phys., 1304, 105 (2013)
[12] Gubser, S. S., Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D, 78, 065034 (2008)
[13] Hartnoll, S. A.; Herzog, C. P.; Horowitz, G. T., Building a holographic superconductor, Phys. Rev. Lett., 101, 031601 (2008) · Zbl 1404.82086
[14] Nakamura, S.; Ooguri, H.; Park, C.-S., Gravity dual of spatially modulated phase, Phys. Rev. D, 81, 044018 (2010)
[15] Basu, P.; Mukherjee, A.; Shieh, H.-H., Supercurrent: vector hair for an Ads black hole, Phys. Rev. D, 79, 045010 (2009)
[16] Herzog, C. P.; Kovtun, P. K.; Son, D. T., Holographic model of superfluidity, Phys. Rev. D, 79, 066002 (2009)
[17] Sonner, J.; Withers, B., A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D, 82, 026001 (2010)
[18] Amado, I.; Areán, D.; Jiménez-Alba, A.; Landsteiner, K.; Melgar, L.; Salazar Landea, I., Holographic superfluids and the Landau criterion, J. High Energy Phys., 1402, 063 (2014)
[19] Ammon, M.; Erdmenger, J.; Kaminski, M.; Kerner, P., Superconductivity from gauge/gravity duality with flavor, Phys. Lett. B, 680, 516 (2009)
[20] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 152 (1997) · Zbl 0996.58509
[21] Horowitz, G. T.; Strominger, A., Black strings and P-branes, Nucl. Phys. B, 360, 197 (1991)
[22] Polchinski, J., String Theory, vol. 2: Superstring Theory and Beyond (1998), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1006.81522
[23] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics. Nonrelativistic Theory (1974), Nauka: Nauka Moscow · Zbl 0178.57901
[24] Kobayashi, S.; Mateos, D.; Matsuura, S.; Myers, R. C.; Thomson, R. M., Holographic phase transitions at finite baryon density, J. High Energy Phys., 0702, 016 (2007)
[25] Witten, E., Baryons and branes in anti-de Sitter space, J. High Energy Phys., 9807, 006 (1998) · Zbl 0958.81081
[26] Gross, D. J.; Ooguri, H., Aspects of large \(N\) gauge theory dynamics as seen by string theory, Phys. Rev. D, 58, 106002 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.