×

Design of an iterative solution module for a parallel sparse matrix library (P_SPARSLIB). (English) Zbl 0854.65029

Presentation of a program package for the iterative solution of (sparse) linear systems by (generalized) conjugate gradient methods on parallel computers. The crucial points for parallelization: matrix-vector product, scalar product and preconditioning step must be delivered by the user. Examples are presented for different matrices, different algorithms and different parallel computers.

MSC:

65F10 Iterative numerical methods for linear systems
65F35 Numerical computation of matrix norms, conditioning, scaling
65Y05 Parallel numerical computation
65Y15 Packaged methods for numerical algorithms
Full Text: DOI

References:

[1] Axelsson, O.; Barker, V. A., Finite Element Solution of Boundary Value Problems (1984), Academic Press: Academic Press Orlando, FL · Zbl 0537.65072
[2] Duff, I. S.; Grimes, R. G.; Lewis, J. G., User’s guide for the Harwell-Boeing sparse matrix collection, (Tech. Rept. TR/PA/92/86 (1992), CERFACS: CERFACS Toulouse)
[3] Fletcher, R., Conjugate gradient methods for indefinite systems, (Watson, G. A., Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974. Proceedings of the Dundee Biennal Conference on Numerical Analysis 1974, University of Dundee (1975), Springer: Springer New York), 73-89 · Zbl 0326.65033
[4] Freund, R. W., A Transpose-Free Quasi-Minimal Residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14, 470-482 (1993) · Zbl 0781.65022
[5] Freund, R. W.; Nachtigal, N. M., QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60, 315-339 (1991) · Zbl 0754.65034
[6] Golub, G. H.; Van Loan, C., Matrix Computations (1981), Academic Press: Academic Press New York
[7] Lanczos, C., Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur. Standards, 49, 33-53 (1952)
[8] Nachtigal, N. M., A look-ahead variant of the Lanczos Algorithm and its application to the Quasi-Minimal Residual method for non-Hermitian linear systems, (Ph.D. Thesis (1991), MIT, Applied Mathematics: MIT, Applied Mathematics Cambridge, MA)
[9] Saad, Y., The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric systems, SIAM J. Numer. Anal., 19, 470-484 (1982) · Zbl 0483.65022
[10] Saad, Y., Practical use of some Krylov subspace methods for solving indefinite and unsymmetric linear systems, SIAM J. Sci. Statist. Comput., 5, 203-228 (1984) · Zbl 0539.65012
[11] Saad, Y., SPARSKIT: A basic tool kit for sparse matrix computations, (Tech. Rept. 90-20 (1990), Research Institute for Advanced Computer Science, NASA Ames Research Center: Research Institute for Advanced Computer Science, NASA Ames Research Center Moffet Field, CA)
[12] Saad, Y., Krylov subspace methods in distributed computing environments, (Tech. Rept. 92-126 (1992), Army High Performance Computing Research Center: Army High Performance Computing Research Center Minneapolis, MN) · Zbl 0897.65022
[13] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Statist. Comput., 14, 461-469 (1993) · Zbl 0780.65022
[14] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[15] Saad, Y.; Wu, K., DQGMRES: a quasi-minimal residual algorithm based on incomplete orthogonalization, (Tech. Rept. UMSI-93/131 (1993), Minnesota Supercomputing Institute: Minnesota Supercomputing Institute Minneapolis, MN) · Zbl 0906.65033
[16] Saad, Y.; Wu, K., Parallel sparse matrix library (P_SPARSLIB): The iterative solvers module, (Tech. Rept. 94-008 (1994), Army High Performance Computing Research Center: Army High Performance Computing Research Center Minneapolis, MN)
[17] Sonneveld, P., CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10, 36-52 (1989) · Zbl 0666.65029
[18] van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Comput., 12, 631-644 (1992) · Zbl 0761.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.