×

Self-dual solutions to pseudo Yang-Mills equations. (English) Zbl 1320.32043

Summary: We study pseudo Yang-Mills fields on a compact \(5\)-dimensional strictly pseudoconvex CR manifold \(M\), i.e., critical points to the functional \[ \mathcal{Y M}_b(D) = \frac{1}{2} \int_M \| \Pi_H R^D \|^2 \theta \wedge(d \theta)^2 \]
on the space \(\mathcal{C}(E, h)\) of all connections \(D\) on a Hermitian vector bundle \((E, h)\) over \(M\), such that \(D h = 0\). If
\[ \mathcal{A} = \big\{D \in \mathcal{C}(E, h) : \xi \rfloor R^D = 0, G_\theta^\ast(\operatorname{Tr}(R^D), d \theta) = 0 \big\} \]
and \(D \in \mathcal{A}\) is an absolute minimum to \(\mathcal{Y M}_b : \mathcal{A} \to \mathbb{R}\), then (i) \(\Delta_b \operatorname{Tr}(R^D) = 0\) and (ii) \(D\) is self-dual or anti-self-dual according to the sign of
\[ c_2(\theta, D) = \int_M \theta \wedge \Big\{\mathbf{P}_2(D) - \frac{m - 1}{2 m} \mathbf{P}_1(D) \wedge \mathbf{P}_1(D) \Big\} \] [where \(\mathbf{P}_k(D)\) is the \(k\)-th Chern form of \((E, D)\)] and provided \(c_2(\theta, D)\) is constant on \(\mathcal{A}\).

MSC:

32V20 Analysis on CR manifolds
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
58E30 Variational principles in infinite-dimensional spaces
Full Text: DOI

References:

[1] Barletta, E.; Dragomir, S.; Urakawa, H., Yang-Mills fields on CR manifolds, J. Math. Phys., 47, 8 (2006), 083504. pp. 41 · Zbl 1112.53014
[3] Dragomir, S.; Ichiyama, T.; Urakawa, H., Yang-Mills theory and conjugate connections, Differential Geom. Appl., 18, 229-238 (2003) · Zbl 1040.53033
[4] Dragomir, S.; Tomassini, G., (Differential Geometry and Analysis on CR Manifolds. Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, vol. 246 (2006), Birkhäuser: Birkhäuser Boston, Basel, Berlin) · Zbl 1099.32008
[5] Dragomir, S.; Urakawa, H., On the inhomogeneous Yang-Mills equation \(d_D^\ast R^D = f\), Interdiscip. Inform. Sci., 6, 1, 41-52 (2000) · Zbl 0959.58020
[9] Gharib, G. M., Canonical reduction of the self-dual Yang-Mills equations to inhomogeneous nonlinear Schrödinger equation and exact solutions, Appl. Math. Sci., 2, 49, 2431-2442 (2008) · Zbl 1187.58034
[10] Graham, R. C., On Sparling’s characterization of Fefferman metrics, Amer. J. Math., 109, 853-874 (1987) · Zbl 0663.53050
[11] Contact metric 5 manifolds, CR twistor spaces, and integrability, J. Math. Phys., 44, 1, 366-368 (2003), Erratum
[12] Itoh, M., Sasakian manifolds, Hodge decomposition and Milnor algebras, Kyushu J. Math., 58, 121-140 (2004) · Zbl 1076.53056
[13] Jost, J., Riemannian Geometry and Geometric Analysis (2002), Springer: Springer Berlin, Heidelberg, New York · Zbl 1034.53001
[14] Kostant, B., (Quantization and Unitary Representations. Quantization and Unitary Representations, Lecture Notes in Math., vol. 170 (1970), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York), 87-208 · Zbl 0223.53028
[15] LeBrun, C., Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc., 284, 2, 601-616 (1984) · Zbl 0513.53006
[16] Lee, J. M., Pseudo-Einstein structures on CR manifolds, Amer. J. Math., 110, 157-178 (1988) · Zbl 0638.32019
[17] Lee, J. M.; Melrose, R., Boundary behaviour of the complex Monge-Ampère equation, Acta Math., 148, 159-192 (1982) · Zbl 0496.35042
[19] Ohkubo, T., CR Weyl geometry and connections of the canonical bundle, Kodai Math. J., 29, 113-143 (2006), CR Weyl geometry and connections of the canonical bundle, Preprint · Zbl 1104.53042
[20] Ohkubo, T.; Sakamoto, K., CR Einstein-Weyl structures, Tsukuba J. Math., 29, 2, 309-361 (2005) · Zbl 1104.53043
[21] Tanaka, N., A Differential Geometric Study on Strongly Pseudo-Convex Manifolds (1975), Kinokuniya Book Store Co., Ltd.: Kinokuniya Book Store Co., Ltd. Kyoto · Zbl 0331.53025
[22] Vaisman, I., New examples of twisted cohomologies, Boll. Unione Mat. Ital., 7-B, 7, 355-368 (1993) · Zbl 0781.53029
[23] Webster, S. M., Pseudohermitian structures on a real hypersurface, J. Differential Geom., 13, 25-41 (1978) · Zbl 0379.53016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.