×

Strength and stability of the Bohl index. (English. Russian original) Zbl 1332.34032

Differ. Equ. 51, No. 5, 592-604 (2015); translation from Differ. Uravn. 51, No. 5, 584-595 (2015).
Let \(H\) be a finite-dimensional space; \(Kv(H)\) denote the collection of all nonempty compact convex subsets of \(H\) and \(J = [\alpha,\omega]\) be a closed interval. Let \(\Lambda (J,H)\) denote a set of multimaps \(\mathcal{A}: J \times H \to Kv(H)\) such that: \(1)\) \(\mathcal{A}\) is measurable in the first argument; \(2)\) \(\mathcal{A}\) is upper semicontinuous for a.e. \(t \in J;\) \(3)\) there is a function \(\varphi \in L^1(J;\mathbb{R})\) such that \(|\mathcal{A}(t,x)| \leq \varphi (t)|v|,\,v \in H\) for a.e. \(t \in J\). The symbol \(\Lambda (H)\) denotes the collection of multimaps \(\mathcal{A}: \mathbb{R}_+ \times H \to Kv(H)\) whose restrictions to \(J \times H\), where \(J \subset \mathbb{R}\) is arbitrary, belong to \(\Lambda (J,H).\)
A multimap \(\mathcal{A} \in \Lambda (H)\) belongs to the class \(\mathcal{B}(\nu,\mathcal{N}),\) where \(\nu \in \mathbb{R},\) \(\mathcal{N}>0\) if all solutions \(x(t)\) of the differential inclusion \[ 0 \in x^\prime + \mathcal{A}(t,x) \] satisfy the estimate \[ |x(t)| \leq \mathcal{N}e^{-\nu (t-s)} |x(s)| \quad (0 \leq s \leq t). \] The least upper bound of numbers \(\nu\) such that \(\mathcal{A} \in \mathcal{B}(\nu,\mathcal{N})\) is called the Bohl index of \(\mathcal{A}\). The author obtains lower bounds for this characteristic, studies the dependence of solutions of the above inclusion on the initial value and the multimap \(\mathcal{A}\) and proves the stability of the Bohl index under small-in-mean perturbations.

MSC:

34A60 Ordinary differential inclusions
34D05 Asymptotic properties of solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] Gajewskii, H., Gröger, K., and Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen,Berlin: Akademie-Verlag, 1974. Translated under the title Nelineinye operatornye uravneniyai operatornye differentsial’nye uravneniya, Moscow: Mir, 1978. · Zbl 0289.47029
[2] Blagodatskikh, V.I. and Filippov, A.F., Differential Inclusions and Optimal Control, Tr. Mat. Inst.Steklova Akad. Nauk SSSR, 1985, vol. 169, pp. 194-252. · Zbl 0595.49026
[3] Borisovich, Yu.G., Gel’man, B.D., Myshkis, A.D., and Obukhovskii, V.V., Vvedenie v teoriyu mnogoznachnykhotobrazhenii i differentsial’nykh vklyuchenii (Introduction to the theory of Multivalued Mappingsand Differential Inclusions), Moscow: Librokom, 2011. · Zbl 1231.54001
[4] Ioffe, A.D. and Tikhomirov, V.M., Teoriya ekstremal’nykh zadach (Theory of Extremal Problems), Moscow: Nauka, 1974. · Zbl 0292.90042
[5] Aubin, J.-P. and Ekeland, I., Applied Nonlinear Analysis, New York: John Wiley & Sons, 1984. Translatedunder the title Prikladnoi nelineinyi analiz, Moscow: Mir, 1988. · Zbl 0641.47066
[6] Tolstonogov, A.A., Differentsial’nye vklyucheniya v banakhovykh prostranstvakh (Differential Inclusionsin a Banach Space), Novosibirsk: Nauka, 1986. · Zbl 0689.34014
[7] Filippov, A.V., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations withDiscontinuous Right-Hand Side), Moscow: Nauka, 1985. · Zbl 0571.34001
[8] Bohl, P., Sobranie trudov (Collected Papers), Riga: Zinatne, 1974.
[9] Daletskii, Yu.L. and Krein, M.G., Ustoichivost’ reshenii differentsial’nykh uravnenii v banakhovom prostranstve(Stability of Solutions of Differential Equations in Banach Space), Moscow: Nauka, 1970. · Zbl 0233.34001
[10] Klimov, V.S., First Approximation Stability Theorems for Differential Inclusions, Mat. Zametki, 2004,vol. 76, no. 4, pp. 517-530. · Zbl 1083.34039 · doi:10.4213/mzm128
[11] Klimov, V.S., The Bohl Index of a Homogeneous Parabolic Inclusion, Izv. Ross. Akad. Nauk Ser. Mat.,2011, vol. 75, no. 2, pp. 99-122. · Zbl 1218.35125 · doi:10.4213/im4088
[12] Donchev, T. and Farki, E., Stability and Euler Approximation of One-Sided Lipschitz Differential Inclusions, SIAM J. Control Optim., 1998, vol. 36, no. 2, pp. 780-796. · Zbl 0913.34014 · doi:10.1137/S0363012995293694
[13] Sokolovskaya, E.V. and Filatov, O.P., Approximation from Above to Systems of Differential Equationswith Non-Lipschitz Right-Hand Side, Mat. Zametki, 2005, vol. 78, no. 5, pp. 763-772. · Zbl 1124.34003 · doi:10.4213/mzm2632
[14] Ekeland, I. and Temam, R., Convex Analysis and Variational Problems, Amsterdam: North-Holland,1976. Translated under the title Vypuklyi analiz i variatsionnye problemy, Moscow, 1979. · Zbl 0322.90046
[15] Demidovich, B.P., Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the Mathematical Theoryof Stability), Moscow: Nauka, 1967. · Zbl 0155.41601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.