×

Data assimilation of time under-sampled measurements using observers, the wave-like equation example. (English) Zbl 1405.93045

Summary: We propose a sequential data assimilation scheme using Luenberger type observers when only some space restricted time under-sampled measurements are available. More precisely, we consider a wave-like equation for which we assume known the restriction of the solution to an open non-empty subset of the spatial domain and for some time samples (typically the sampling step in time is much larger than the time discretization step). To assimilate the available data, two strategies are proposed and analyzed. The first strategy consists in assimilating data only if they are available and the second one in assimilating interpolation of the available data at all the discretization times. In order to tackle the spurious high frequencies which appear when we discretize the wave equation, for both strategies, we introduce a numerical viscous term. In this case, we prove some error estimates between the exact solution and our observers. Numerical simulations illustrate the theoretical results in the case of the one dimensional wave equation.

MSC:

93B07 Observability
93B40 Computational methods in systems theory (MSC2010)
65D05 Numerical interpolation
93D15 Stabilization of systems by feedback

Software:

EnKF; Verdandi
Full Text: DOI

References:

[1] R.A. Anthes, Data assimilation and initialization of hurricane prediction model. J. Atmospheric Sci.31 (1974) 702-719. · doi:10.1175/1520-0469(1974)031<0702:DAAIOH>2.0.CO;2
[2] H T Banks, K. Ito and C. Wang, Exponentially stable approximations of weakly damped wave equations, in Estimation and control of distributed parameter systems (Vorau, 1990). Birkhäuser, Basel (1991) 1-33. · Zbl 0850.93719
[3] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim.30 (1992) 1024-1065. · Zbl 0786.93009 · doi:10.1137/0330055
[4] A. Bensoussan, Filtrage optimal des systèmes linéaires. Dunod (1971). · Zbl 0231.93022
[5] J. Blum, F.X. LeDimet and I.N. Navon, Data assimilation for geophysical fluids. In vol. 14 of Handbook of Numerical Analysis: Computational Methods for the Atmosphere and the Oceans. Elsevier, Amsterdam (2008) 377-434.
[6] R. Chabiniok, P. Moireau, P.-F. Lesault, A. Rahmouni, J.-F. Deux and D. Chapelle, Trials on tissue contractility estimation from cardiac cine-MRI using a biomechanical heart model. In vol. 6666, Proc. of FIMH’11. Lect. Notes Compt. Sci. (2011) 304-313.
[7] D. Chapelle, N. Cîndea, M. De Buhan and P. Moireau, Exponential convergence of an observer based on partial field measurements for the wave equation. Math. Probl. Eng.2012 (2012) 12. · Zbl 1264.93089 · doi:10.1155/2012/581053
[8] D. Chapelle, N. Cîndea and P. Moireau, Improving convergence in numerical analysis using observers. The wave-like equation case. Math. Models Methods Appl. Sci. (2012). · Zbl 1258.65051
[9] D. Chapelle, M. Fragu, V. Mallet and P. Moireau, Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med. Biol. Eng. Comput.5 (2013) 1221-1233. · doi:10.1007/s11517-012-0969-6
[10] S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Commun. Part. Differ. Eqs.19 (1994) 213-243. · Zbl 0818.35072 · doi:10.1080/03605309408821015
[11] M. Daoulatli, B. Dehman and M. Khenissi, Local energy decay for the elastic system with nonlinear damping in an exterior domain. SIAM J. Control Optim.48 (2010) 5254-5275 · Zbl 1217.35026 · doi:10.1137/090757332
[12] G. Evensen, Data Assimilation - The Ensemble Kalman Filter. Springer Verlag (2007). · Zbl 1157.86001
[13] S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math.113 (2009) 377-415. · Zbl 1170.93013 · doi:10.1007/s00211-009-0235-5
[14] S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl.91 (2009) 20-48. · Zbl 1163.74019 · doi:10.1016/j.matpur.2008.09.002
[15] S. Ervedoza, C. Zheng and E. Zuazua, On the observability of time-discrete conservative linear systems. J. functional Anal.254 (2008) 3037-3078. · Zbl 1143.65044 · doi:10.1016/j.jfa.2008.03.005
[16] G. Haine and K. Ramdani, Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations. Numer. Math.120 (2012) 307-343. · Zbl 1235.65082 · doi:10.1007/s00211-011-0408-x
[17] F.M. Hante, M. Sigalotti and M. Tucsnak, On conditions for asymptotic stability of dissipative infinite-dimensional systems with intermittent damping. J. Differ. Eqs.252 (2012) 5569-5593. · Zbl 1246.34057 · doi:10.1016/j.jde.2012.01.037
[18] A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems. Arch. Rational Mech. Anal.100 (1988) 191-206. · Zbl 0654.35070 · doi:10.1007/BF00282203
[19] J.E. Hoke and R.A. Anthes, The initialization of numerical models by a dynamic-initialization technique (fluid flow models for wind forecasting). Monthly Weather Rev.104 (1976) 1551-1556. · doi:10.1175/1520-0493(1976)104<1551:TIONMB>2.0.CO;2
[20] R.E. Kalman and R.S. Bucy, New results in linear filtering and prediction theory. J. Basic Eng.83 (1961) 95-108. · doi:10.1115/1.3658902
[21] S. Lakshmivarahan and J.M. Lewis, Nudging methods: A critical overview. In vol. XVIII of Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications. Edited by S.K. Park and L. Xu. Springer (2008).
[22] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A38 (2010) 97-110.
[23] X.-D. Li and C.-Z. Xu, Infinite-dimensional Luenberger-like observers for a rotating body-beam system. Systems Control Lett.60 (2011) 138-145. · Zbl 1209.93023 · doi:10.1016/j.sysconle.2010.11.005
[24] K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control Optim.35 (1997) 1574-1590. · Zbl 0891.93016 · doi:10.1137/S0363012995284928
[25] D.G. Luenberger, An introduction to observers. IEEE T. Automat. Contr.16 (1971) 596-602. · doi:10.1109/TAC.1971.1099826
[26] P. Moireau, D. Chapelle and P. Le Tallec. Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Engrg.197 (2007) 659-677. · Zbl 1169.74439 · doi:10.1016/j.cma.2007.08.021
[27] P. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements: Perspectives in medical imaging. Inverse Probl.25 (2009) 035010. · Zbl 1169.35393 · doi:10.1088/0266-5611/25/3/035010
[28] I.M. Navon, Data assimilation for numerical weather prediction: a review. In vol. XVIII of Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Edited by S.K. Park and L. Xu. Springer (2009).
[29] N.K. Nichols, Mathematical concepts of data assimilation, in Data Assimilation. Edited by W. Lahoz, B. Khattatov and R. Menard. Springer Berlin Heidelberg (2010) 13-39.
[30] K. Ramdani, T. Takahashi and M. Tucsnak, Uniformly exponentially stable approximations for a class of second order evolution equations-application to LQR problems. ESAIM: COCV13 (2007) 503-527. · Zbl 1126.93050 · doi:10.1051/cocv:2007020
[31] K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica (2012) 1616-1625. · Zbl 1204.93023
[32] D. Simon, Optimal state estimation: Kalman, H_{\infty} and nonlinear approaches. Wiley-Interscience (2006).
[33] L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math.26 (2007) 337-365. · Zbl 1119.65086 · doi:10.1007/s10444-004-7629-9
[34] D.T. Pham, J. Verron and L. Gourdeau, Singular evolutive kalman filters for data assimilation in oceanography. C. R. Acad. Sci. Paris (1997) 255-260.
[35] M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser Basel (2009). · Zbl 1188.93002
[36] X. Zhang, C. Zheng and E. Zuazua, Exact controllability of the time discrete wave equation: a multiplier approach. Discret. Contin. Dyn. Syst. (2007) 229-245. · Zbl 1189.93026
[37] E. Zuazua, Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev.47 (2005) 197-243. · Zbl 1077.65095 · doi:10.1137/S0036144503432862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.