×

Rough wall effect on micro-swimmers. (English) Zbl 1315.93015

Summary: We study the effect of a rough wall on the controllability of micro-swimmers made of several balls linked by thin jacks: the so-called 3-sphere and 4-sphere swimmers. Our work completes the previous work of F. Alouges, L. Giraldi [”Enhanced controllability of low Reynolds number swimmers in the presence of a wall”, Acta Appl. Math. 128, No. 1, 153-179 (2013; Zbl 1287.35063)] dedicated to the effect of a flat wall. We show that a controllable swimmer (the 4-sphere swimmer) is not impacted by the roughness. On the contrary, we show that the roughness changes the dynamics of the 3-sphere swimmer, so that it can reach any direction almost everywhere.

MSC:

93B05 Controllability
35Q93 PDEs in connection with control and optimization
76D05 Navier-Stokes equations for incompressible viscous fluids

Citations:

Zbl 1287.35063

References:

[1] F. Alouges, A. DeSimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers : an example. J. Nonlinear Sci.18 (2008) 277-302. · Zbl 1146.76062 · doi:10.1007/s00332-007-9013-7
[2] F. Alouges and L. Giraldi, Enhanced controllability of low Reynolds number swimmers in the presence of a wall. Acta Applicandae Mathematicae128 (2013) 153-179. · Zbl 1287.35063 · doi:10.1007/s10440-013-9824-5
[3] F. Alouges, A. DeSimone, L. Giraldi and M. Zoppello, Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers. J. Non-Linear Mech.56 (2013) 132-141. · doi:10.1016/j.ijnonlinmec.2013.04.012
[4] F. Alouges, A. DeSimone, L. Heltai, A. Lefebvre and B. Merlet, Optimally swimming Stokesian robots. Discrete Contin. Dyn. Syst. Ser. B18 (2013). · Zbl 1375.76228
[5] A.P. Berke, L. Turner, H.C. Berg and E. Lauga, Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett.101 (2008). · doi:10.1103/PhysRevLett.101.038102
[6] J.R. Blake, A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Cambridge Philos. Soc.70 (1971) 303. · Zbl 0244.76016 · doi:10.1017/S0305004100049902
[7] T. Chambrion and A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlinear Sci.21 (2011) 325-385. · Zbl 1222.74019 · doi:10.1007/s00332-010-9084-8
[8] J.M. Coron, Control and Nonlinearity. American Mathematical Society (2007).
[9] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stockes Equations. Springer (2011).
[10] D. Gérard Varet and M. Hillairet, Computation of the drag force on a rough sphere close to a wall. ESAIM: M2AN46 (2012) 1201-1224. · Zbl 1267.76020 · doi:10.1051/m2an/2012001
[11] L. Giraldi, P. Martinon and M. Zoppello, Controllability and optimal strokes for N-link micro-swimmer. Proc. of 52th Conf. on Decision and Control (Florence, Italy) (2013).
[12] R. Golestanian and A. Ajdari, Analytic results for the three-sphere swimmer at low Reynolds. Phys. Rev. E77 (2008) 036308. · doi:10.1103/PhysRevE.77.036308
[13] A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique. [A geometric analysis]. Vol. 48 of Math. Appl. Springer, Berlin, 2001.
[14] V. Jurdjevic, Geometric control theory. Cambridge University Press (1997). · Zbl 0940.93005
[15] E. Lauga and T. Powers, The hydrodynamics of swimming micro-organisms. Rep. Prog. Phys.72 (2009) 09660. · doi:10.1088/0034-4885/72/9/096601
[16] R. Ledesma-Aguilar and J.M. Yeomans, Enhanced motility of a microswimmer in rigid and elastic confinement. Phys. Rev. Lett.111 (2013) 138101. · doi:10.1103/PhysRevLett.111.138101
[17] J. Lighthill, Mathematical biofluiddynamic. Soc. Ind. Appl. Math. Philadelphia, Pa. (1975)
[18] J. Lohéac and A. Munnier, Controllability of 3D low Reynolds swimmers. ESAIM: COCV20 (2014) 236-268. · Zbl 1366.93057 · doi:10.1051/cocv/2013063
[19] J. Lohéac, J.F. Scheid and M. Tucsnak, Controllability and time optimal control for low Reynolds numbers swimmers. Acta Appl. Math.123 (2013) 175-200. · Zbl 1255.93026 · doi:10.1007/s10440-012-9760-9
[20] R. Montgomery, A tour of subriemannian geometries, theirs geodesics and applications. American Mathematical Society (2002). · Zbl 1044.53022
[21] A. Najafi and R. Golestanian, Simple swimmer at low Reynolds number: Three linked spheres. Phys. Rev. E69 (2004) 062901. · doi:10.1103/PhysRevE.69.062901
[22] Y. Or and M. Murray, Dynamics and stability of a class of low Reynolds number swimmers near a wall. Phys. Rev. E79 (2009) 045302. · doi:10.1103/PhysRevE.79.045302
[23] E.M. Purcell, Life at low Reynolds number. Am. J. Phys.45 (1977) 3-11. · doi:10.1119/1.10903
[24] S.H. Rad and A. Najafi, Hydrodynamic interactions of spherical particles in a fluid confined by a rough no-slip wall. Phys. Rev. E82 (2010) 036305. · doi:10.1103/PhysRevE.82.036305
[25] L. Rothschild, Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature (1963).
[26] D.J. Smith and J.R. Blake, Surface accumulation of spermatozoa: a fluid dynamic phenomenon. Math. Sci.34 (2009) 74-87. · Zbl 1422.76216
[27] D.J. Smith, E.A. Gaffney, J.R. Blake and J.C. Kirkman-Brown, Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech.621 (2009) 289-320. · Zbl 1171.76476 · doi:10.1017/S0022112008004953
[28] G. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. London A209 (1951) 447-461. · Zbl 0043.40302 · doi:10.1098/rspa.1951.0218
[29] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. AMS, Chelsea (2005). · Zbl 0383.35057
[30] E.F. Whittlesey, Analytic functions in Banach spaces. Proc. Amer. Math. Soc.16 (1965) 1077-1083. · Zbl 0143.15302 · doi:10.1090/S0002-9939-1965-0184092-2
[31] H. Winet, G.S. Bernstein and J. Head, Observation on the response of human spermatozoa to gravity, boundaries and fluid shear. Reproduction70 (1984).
[32] H. Winet, G.S. Bernstein and J. Head, Spermatozoon tendency to accumulate at walls is strongest mechanical response. J. Androl. (1984).
[33] C. Ybert, C. Barentin, C. Cottin-Bizonne, P. Joseph and L. Bocquet, Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids19 (2007). · Zbl 1182.76848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.