×

Hamilton-Jacobi equations for optimal control on junctions and networks. (English) Zbl 1318.49049

ESAIM, Control Optim. Calc. Var. 21, No. 3, 876-899 (2015); erratum ibid. 22, No. 2, 539-542 (2016).
Summary: We consider continuous-state and continuous-time control problems where the admissible trajectories of the system are constrained to remain on a network. A notion of viscosity solution of Hamilton-Jacobi equations on the network has been proposed in earlier articles. Here, we propose a simple proof of a comparison principle based on arguments from the theory of optimal control. We also discuss stability of viscosity solutions.

MSC:

49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
49J15 Existence theories for optimal control problems involving ordinary differential equations
34H05 Control problems involving ordinary differential equations
Full Text: DOI

References:

[1] Y. Achdou, F. Camilli, A. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks. Nonlinear Differ. Eq. Appl.20 (2013) 413-445. · Zbl 1268.35120 · doi:10.1007/s00030-012-0158-1
[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia. Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA (1997). · Zbl 0890.49011
[3] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in R^{N}. ESAIM: COCV19 (2013) 710-739. · Zbl 1287.49028 · doi:10.1051/cocv/2012030
[4] G. Barles, A. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in R^{N}. SIAM J. Control Optim.52 (2014) 1712-1744. · Zbl 1297.49041 · doi:10.1137/130922288
[5] G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim.21 (1990) 21-44. · Zbl 0691.49028 · doi:10.1007/BF01445155
[6] A.-P. Blanc, Deterministic exit time control problems with discontinuous exit costs. SIAM J. Control Optim.35 (1997) 399-434. · Zbl 0871.49027 · doi:10.1137/S0363012994267340
[7] A.-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data. Nonlinear Anal.45 (2001) 1015-1037. · Zbl 0995.49016 · doi:10.1016/S0362-546X(99)00432-0
[8] I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc.318 (1990) 643-683. · Zbl 0702.49019 · doi:10.1090/S0002-9947-1990-0951880-0
[9] K.-J. Engel, M. Kramar Fijavž, R. Nagel and E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media3 (2008) 709-722. · Zbl 1154.93004 · doi:10.3934/nhm.2008.3.709
[10] H. Frankowska and S. Plaskacz, Hamilton-Jacobi equations for infinite horizon control problems with state constraints, Calculus of variations and optimal control (Haifa, 1998). In vol. 411 of Res. Notes Math. Chapman & Hall/CRC, Boca Raton, FL (2000) 97-116. · Zbl 0996.49016
[11] H. Frankowska and S. Plaskacz, Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints. J. Math. Anal. Appl.251 (2000) 818-838. · Zbl 1056.49026 · doi:10.1006/jmaa.2000.7070
[12] M. Garavello and B. Piccoli, Traffic flow on networks. Conservation laws models. In vol. of AIMS Ser. Appl. Math. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). · Zbl 1136.90012
[13] C. Imbert and R. Monneau, The vertex test function for Hamilton-Jacobi equations on networks. Preprint arXiv:1306.2428 (2013).
[14] C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM: COCV19 (2013) 129-166. · Zbl 1262.35080 · doi:10.1051/cocv/2012002
[15] H. Ishii, A short introduction to viscosity solutions and the large time behavior of solutions of Hamilton-Jacobi equations. Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. In vol. 2074 of Lect. Notes Math. Springer (2013) 111-249. · Zbl 1269.49044
[16] H. Ishii and S. Koike, A new formulation of state constraint problems for first-order PDEs. SIAM J. Control Optim.34 (1996) 554-571. · Zbl 0847.49025 · doi:10.1137/S0363012993250268
[17] E.J. McShane and R.B. Warfield Jr., On Filippov’s implicit functions lemma. Proc. Amer. Math. Soc.18 (1967) 41-47. · Zbl 0145.34403
[18] S. Oudet, Hamilton-Jacobi equations for optimal control on heterogeneous structures with geometric singularity, work in progress (2014).
[19] Z. Rao, A. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-bellman equations (2013). · Zbl 1298.49043
[20] Z. Rao and H. Zidani, Hamilton-jacobi-bellman equations on multi-domains, Control and Optimization with PDE Constraints. Springer (2013) 93-116. · Zbl 1272.49046
[21] D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological networks. Calc. Var. Partial Differ. Eq.46 (2013) 671-686. · Zbl 1260.49047 · doi:10.1007/s00526-012-0498-z
[22] H.M. Soner, Optimal control with state-space constraint. I. SIAM J. Control Optim.24 (1986) 552-561. · Zbl 0597.49023 · doi:10.1137/0324032
[23] H.M. Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim.24 (1986) 1110-1122. · Zbl 0619.49013 · doi:10.1137/0324067
[24] M. Valadier, Sous-différentiels d’une borne supérieure et d’une somme continue de fonctions convexes. C. R. Acad. Sci. Paris Sér. A-B268 (1969) A39-A42. · Zbl 0164.43302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.