×

Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition in variable exponent Sobolev spaces. (English) Zbl 1339.46033

Authors’ abstract: In this paper, we will establish Poincaré inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincaré inequalities for vector fields satisfying Hörmander’s condition in variable non-isotropic Sobolev spaces. We also set up the higher order Poincaré inequalities with variable exponents on stratified Lie groups. Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with variable exponents such as the \(p(x)\)-subLaplacian. Our results are only stated and proved for vector fields satisfying Hörmander’s condition, but they hold for Grushin vector fields as well with obvious modifications.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B35 Function spaces arising in harmonic analysis
26D10 Inequalities involving derivatives and differential and integral operators
Full Text: DOI

References:

[1] Calderón, A. P.: Inequalities for the maximal function relative to a metric. Studia Math., 57, 297-306 (1976) · Zbl 0341.44007
[2] Capogna, L., Danielli, D., Garofalo, N.: Subelliptic mollifiers and a basic pointwise estimate of Poincaré type. Math. Z., 226, 147-154 (1997) · Zbl 0893.35023 · doi:10.1007/PL00004330
[3] Chanillo, S., Wheeden, R.: Weighted poincaré and Sobolev inequalities and estimates for Peano maximal functions. Amer. J. Math., 107, 1191-1226 (1985) · Zbl 0575.42026 · doi:10.2307/2374351
[4] Cohn, W. S., Lu, G., Wang, P.: Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications. J. Funct. Anal., 249, 393-424 (2007) · Zbl 1129.22007 · doi:10.1016/j.jfa.2007.02.007
[5] Coifman, R. R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. (In French) Étude de certaines intégrales singulières. Lecture Notes in Mathematics, Vol. 242, v+160 pp, Springer-Verlag, Berlin-New York, 1971 · Zbl 0224.43006
[6] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue spaces. In: Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013 · Zbl 1268.46002 · doi:10.1007/978-3-0348-0548-3
[7] Ferferman, C., Phong, D. H.: Subelliptic eigenvalue problems. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill.), 1981, 590-606 · Zbl 0503.35071
[8] Folland, G. B., Stein, E. M.: Hardy Spaces on Honogeneous Groups, Princeton Univercity Press, Princeton, 1980
[9] Franchi, B.: Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. Trans. Amer. Math. Soc., 327, 125-158 (1991) · Zbl 0751.46023
[10] Franchi, B., Gutierrez, C., Wheeden, R. L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations, 19, 523-604 (1994) · Zbl 0822.46032 · doi:10.1080/03605309408821025
[11] Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Sc. Norm. Sup. Pisa., 10, 523-541 (1983) · Zbl 0552.35032
[12] Franchi, B., Lu, G., Wheeden, R. L.: Representation formulas and weighted Poincaré inequalities for Hörmander vector fields. Ann. Inst. Fourier (Grenoble), 45, 577-604 (1995) · Zbl 0820.46026 · doi:10.5802/aif.1466
[13] Franchi, B., Lu, G., Wheeden, R. L.: The relationship between Poincaré inequalities and representation formulas in spaces of homogeneous type. International Math. Res. Notices, 1, 1-14 (1996) · Zbl 0856.43006 · doi:10.1155/S1073792896000013
[14] Harjulehto, P., Hästö, P.: A capacity apporoach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Complut., 17(1), 129-146 (2004) · Zbl 1072.46021 · doi:10.5209/rev_REMA.2004.v17.n1.16790
[15] Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on Metric spaces: the Hardy-Littlewood maximal operator. Real Anal. Exchange, 30(1), 87-104 (2004/2005) · Zbl 1072.42016
[16] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math., 119, 147-172 (1967) · Zbl 0156.10701 · doi:10.1007/BF02392081
[17] Jerison, D.: The poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J., 53, 503-523 (1986) · Zbl 0614.35066 · doi:10.1215/S0012-7094-86-05329-9
[18] Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and application. Rev. Mat. Iberoamericana, 8(3), 367-439 (1992) · Zbl 0804.35015 · doi:10.4171/RMI/129
[19] Lu, G.: The sharp Poincaré inequality for free vector fields: an endpoint result. Rev. Mat. Iberoamericana, 10(2), 453-466 (1994) · Zbl 0860.35006 · doi:10.4171/RMI/158
[20] Lu, G.: Local and global interpolation inequalities for the Folland-Stein Sobolev spaces and polynomials on the stratified groups. Math. Res. Lett., 4, 777-790 (1997) · Zbl 0910.26007 · doi:10.4310/MRL.1997.v4.n6.a1
[21] Lu, G.: Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups. Acta Math. Sin., Engl. Series, 16(3), 405-444 (2000) · Zbl 0973.46020 · doi:10.1007/PL00011552
[22] Lu, G., Wheeden, R. L.: An optimal representation formula for Carnot-Carathéodory vector fields. Bull. London Math. Soc., 30, 578-584 (1998) · Zbl 0931.31003 · doi:10.1112/S0024609398004895
[23] Lu, G., Wheeden, R. L.: High order representation formulas and embedding theorems on stratified groups and generations. Studia Math., 142, 101-133 (2000) · Zbl 0974.46039
[24] Lu, G., Wheeden, R. L.: Simultaneous representation and approximation formulas and high-order Sobolev embedding theorems on stratified groups. Constr. Approx., 20, 647-668 (2004) · Zbl 1070.46024 · doi:10.1007/s00365-003-0553-2
[25] Maheux, P., Saloff-Coste, L.: Analyse sur les boules d’un oprateur sous-elliptique (in French). [Analysis on the balls of a subelliptic operator] Math. Ann., 303(4), 713-740 (1995) · Zbl 0836.35106 · doi:10.1007/BF01461013
[26] Nagel, A., Stein, E. M., Winger, S.: Ball and metrics defined by vector fields I: basic properties. Acta Math., 155, 103-147 (1985) · Zbl 0578.32044 · doi:10.1007/BF02392539
[27] Rothschild, L. P., Stein, E. M.: Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 247-320 (1976) · Zbl 0346.35030 · doi:10.1007/BF02392419
[28] Sanchez-Calle, A.: Fundamental solutions and geometry of the sums of squares of vector fields. Invent. Math., 78, 143-160 (1984) · Zbl 0582.58004 · doi:10.1007/BF01388721
[29] Sawyer, E., Wheeden, R. L.: Weighted inequalities for fractional integrals on euclidean and homogeneous spaces. Amer. J. Math., 114(4), 813-874 (1992) · Zbl 0783.42011 · doi:10.2307/2374799
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.