×

Exponentially fitted finite difference scheme for singularly perturbed two point boundary value problems. (English) Zbl 1319.65065

Summary: In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer at left (or right) end of the domain. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It is shown that proposed technique provides first order accuracy independent of the perturbation parameter. Several linear and nonlinear problems are solved by the proposed method and numerical results are presented to illustrate the theoretical parameter-uniform error bounds established.

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
34B05 Linear boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
34E15 Singular perturbations for ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Bender, C.M., Orszaq, S.A.: Advanced Mathematical Methods for Scientists and Engineers. Springer-Verlag, New York (1999) · Zbl 0938.34001 · doi:10.1007/978-1-4757-3069-2
[2] Chakravarthy, P.P., Reddy, Y.N.: Exponentially fitted modified upwind scheme for singular perturbation problems. Int. J. Fluid Mech. Res. 33(2), 119-136 (2006) · doi:10.1615/InterJFluidMechRes.v33.i2.10
[3] Doolan, E.P., Miller, J.J.H., Schildres, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980) · Zbl 0459.65058
[4] Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. Chapman & Hall/CRC Press, Boca Raton (2000) · Zbl 0964.65083
[5] Habib, H.M., El-Zahar, E.R.: An algorithm for solving singular perturbation problems with mechanization. Appl. Math. Comput. 188, 286-302 (2007) · Zbl 1114.65340 · doi:10.1016/j.amc.2006.09.132
[6] Jayakumar, J., Ramanujam, N.: A numerical method for singular perturbation problems arising in chemical reactor theory. Comput. Math. Appl. 27, 83-99 (1994) · Zbl 0792.65061 · doi:10.1016/0898-1221(94)90078-7
[7] Kadalbajoo, M.K., Kumar, D.: Initial value technique for singularly perturbed two point boundary value problems using an exponentially fitted finite difference scheme. Comput. Math. Appl. 57, 1147-1156 (2009) · Zbl 1186.65103 · doi:10.1016/j.camwa.2009.01.010
[8] Kadalbajoo, M.K., Kumar, D.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217, 3641-3716 (2010) · Zbl 1208.65105 · doi:10.1016/j.amc.2010.09.059
[9] Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York (1996) · Zbl 0846.34001 · doi:10.1007/978-1-4612-3968-0
[10] Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore (1996) · Zbl 0915.65097 · doi:10.1142/2933
[11] Mohapatra, J., Natesan, S.: Uniformly convergent numerical method for singularly perturbed differential-difference equation using grid equidistribution. Int. J. Numer. Methods Biomed. Eng. 27(9), 1427-1445 (2011) · Zbl 1229.65132
[12] O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer-Verlag, New York (1990)
[13] Patidar, K.C.: High order parameter uniform numerical method for singular perturbation problems. Appl. Math. Comput. 188, 720-733 (2007) · Zbl 1119.65070 · doi:10.1016/j.amc.2006.10.040
[14] Rao, R.N., Chakravarty, P.P.: A finite difference method for singularly perturbed differentialdifference equations with layer and oscillatory behavior. Appl. Math. Model. 37, 5743-5755 (2013) · Zbl 1274.65213 · doi:10.1016/j.apm.2012.11.004
[15] Rashidi, M.M., Shooshtari, A., Bg, O.A.: Homotopy perturbation study of nonlinear vibration of von karman rectangular plates. Comput. Struct. 106, 46-55 (2012) · doi:10.1016/j.compstruc.2012.04.004
[16] Rashidi, M.M.: The modified differential transform method for solving mhd boundary-layer equations. Comput. Phys. Comm. 180(11), 2210-2217 (2009) · Zbl 1197.76156 · doi:10.1016/j.cpc.2009.06.029
[17] Rashidi, M.M., Ganji, D.D., Dinarvand, S.: Explicit analytical solutions of the generalized burger and burgerfisher equations by homotopy perturbation method. Numer. Methods Partial Differ. Equ. 25(2), 409-417 (2009) · Zbl 1159.65085 · doi:10.1002/num.20350
[18] Reddy, Y.N., Chakravarty, P.P.: An expoential fitted finite difference method for singular perturbation problem. Appl. Math. Comput. 154, 83-101 (2004) · Zbl 1050.65075 · doi:10.1016/S0096-3003(03)00693-3
[19] Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (1996) · Zbl 0844.65075 · doi:10.1007/978-3-662-03206-0
[20] Vigo-Aguiar, J., Natesan, S.: An efficient numerical method for singular perturbation problems. J. Comput. Appl. Math. 192, 132-141 (2006) · Zbl 1095.65068 · doi:10.1016/j.cam.2005.04.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.